Plan For Today:

- 1. Go over Test 1. Any questions or concerns?
- 2. Any questions about material from last class? (Translations)
- 3. Continue working through transformations in Chapter 2
 - ✓ 2.0 Graphing Review
 - ✓ 2.4 Horizontal and Vertical Translations
 - * 2.4 Reflections
 - * 2.4 Stretches
 - * 2.5 Inverse of a Relation
 - * 2.6 Combining Transformations
- 4. Work on practice questions in workbook and practice questions handout.
- 5. Work on Ch2 Transformations Desmos project.

Project for Chapter 2 is online.

Join my PC12 Class in Desmos: https://tinyurl.com/PC12-Spring2024
Start the Ch2 Transformations Project in Desmos: https://tinyurl.com/Ch1-Project-Spring2024

f(x) = af(b(x - c)) + d

Plan Going Forward:

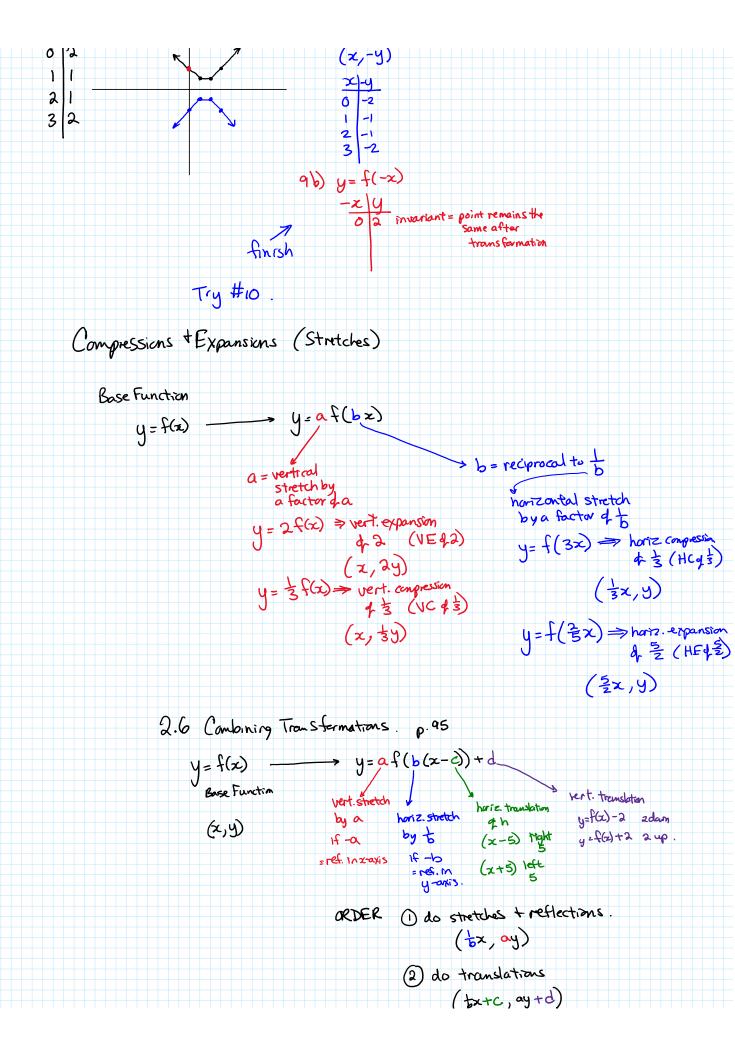
- 1. Work on practice questions from 2.4 & 2.6 in the workbook. Start working on Ch1 Project (in Desmos).
 - * 2.4 & 2.6 Combining transformations check-in Quiz on thursday, may 9th
- 2. We will finish Ch2 with 2.5 Inverse Functions on Thursday and review Ch1-2 for the U1 Exam.

WITH 1 EXAM ON CH1&2 ON MONDAY, MAY 13TH

- 12 Multiple Choice & 20 marks on the Written
- lacktriangle \sim 1.5 hours please prepare so you are not "learning" while doing the test
- Closed-book no notes, formula sheet provided
- I'll try to mark it for Tuesday
- 3. We will start Chapter 3 Polynomials on Monday after the Unit 1 Exam (depending on time)

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at <u>anurita.weebly.com</u> after class. Anurita Dhiman = adhiman@sd35.bc.ca

Wednesday, May 8th In-Class Notes Translation Practice p.79 #2abc #1 a ce #9 1 881 Reflections. Reflection in y-axis
is a horizontal reflective Base y=5(2) :. x becomes -x y=f(-x) Reflection in x-axis is a vertical reflection : y becomes -y y = -f(x) #2 def p.79 (-3,1) (x,y) 21) y = -f(x)reflection \rightarrow multiply y-coordinate in x-axis by (-1) $(-3.1) \rightarrow (-3,-1)$ 2e) y = f(-x)reflection > multiply x-coordinate in y-axis by (-1) $(-3,1) \rightarrow (3,1)$ #9 p.81 a) b) 9a) y=-f(x) res in x-axis (x,-y)



Ex:
$$y = \sqrt{x} - \frac{1}{2} \sqrt{4(x-2)} + 6$$

- 1) ref. in x-axis + VCd = and HC d =
- 2 2 right + 6 up.

TRY #18-19 p.83-84 (2.4) #7 p.99.

Graphing Review

Basic Graphing Review – Know these base functions and their graphs so you are able to apply transformations on them in the course.

- Label the x- and y- axis
- · Make a table of values
- Plot the point on your grid
- · Draw a line or smooth curve
- Domain: the set of x values valid in the equation
- Range: the set of y values valid in the equation

Use Set Notation for writing domain and range:

 $\{x \mid x \in R\}$ means x is in the set of real numbers

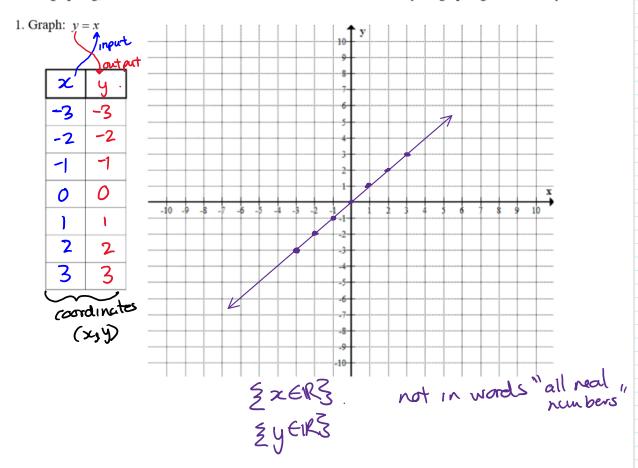
EXERS

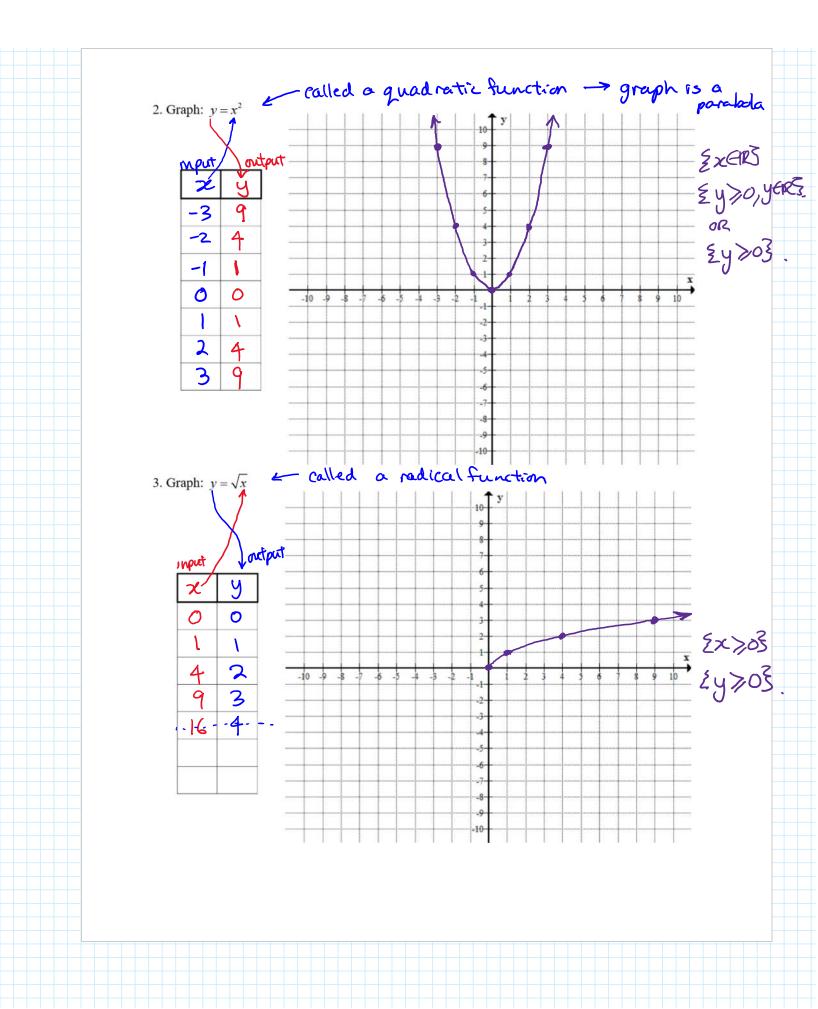
 $\{y \mid y \in R\}$ means y is in the set of real numbers

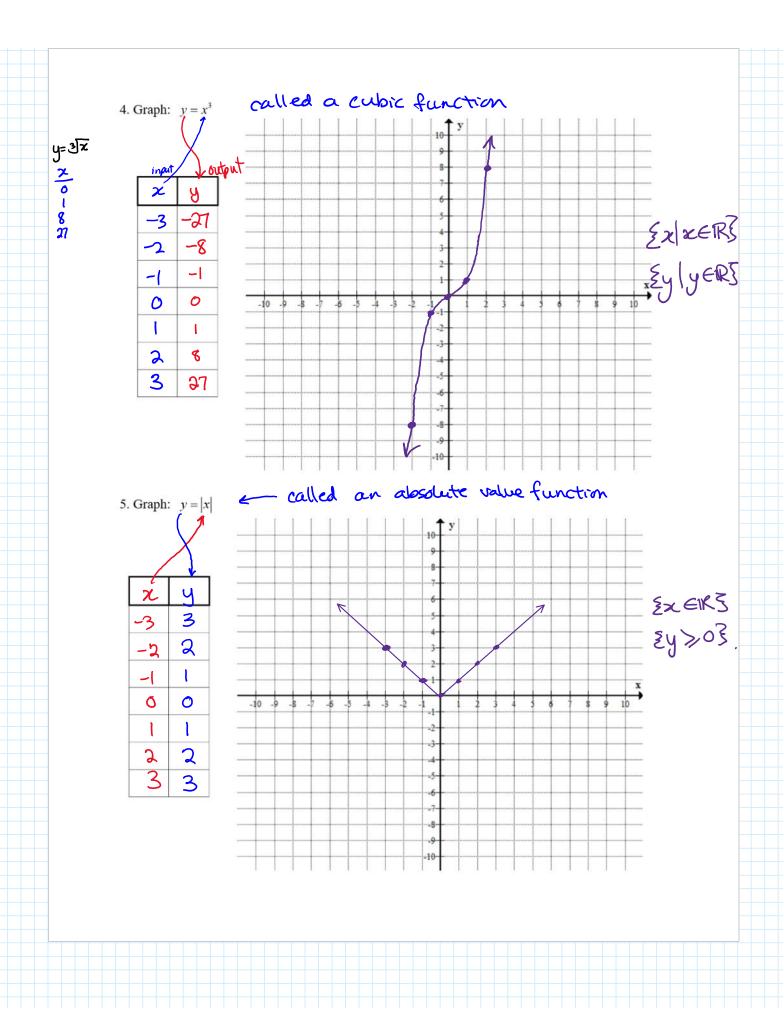
Use the following symbols:

- ≤ for less than and equal to; < for only less than
- \geq for greater than and equal to: > for only greater than
- \neq for not equal to

When graphing, start with a table of values. Look at restrictions and use your graphing calc to verify.



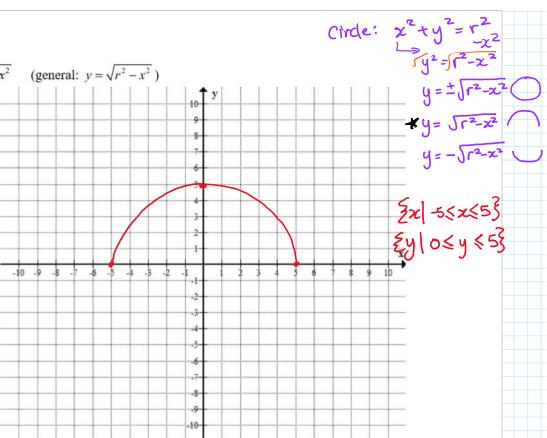




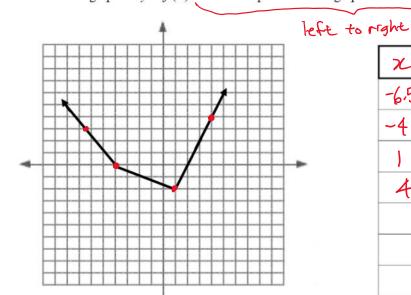
6. Graph: $y = \sqrt{25 - x^2}$ (general: $y = \sqrt{r^2 - x^2}$)

(notr=5) r=5

-			
	2	5)	
	-5	0	
	0	5	
	5	0	



7. This is the graph of y = f(x). List 4 or 5 points on this graph in the table of values.



X	y
-6.5	3
-4	0
)	-2
4	4

2.4 Reflections

reflection

- a transformation where each point of the original graph has an image point resulting from a reflection in a line
- may result in a change of orientation of a graph while preserving its shape

A **reflection** of a graph creates a mirror image in a line called the line of reflection. Reflections, like translations, do not change the shape of the graph. However, unlike translations, reflections may change the orientation of the graph.

- When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the x-axis.
- When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the y-axis.

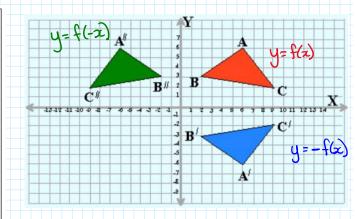
invariant point

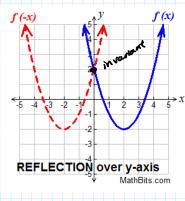
- a point on a graph that remains unchanged after a transformation is applied to it
- any point on a curve that lies on the line of reflection is an invariant point

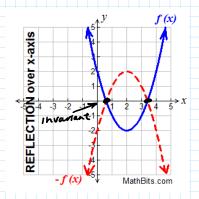
A GENERAL NOTE: REFLECTIONS

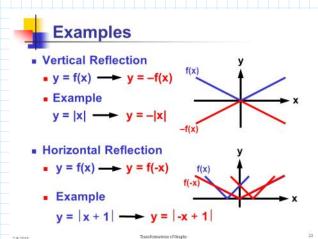
Given a function f(x), a new function g(x) = -f(x) is a **vertical reflection** of the function f(x), sometimes called a reflection about (or over, or through) the x-axis.

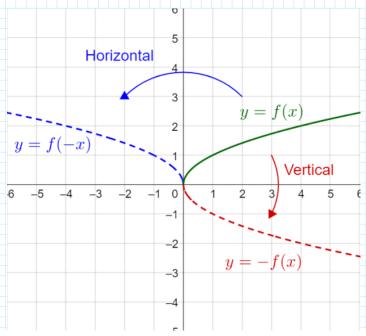
Given a function f(x), a new function g(x) = f(-x) is a **horizontal reflection** of the function f(x), sometimes called a reflection about the y-axis.

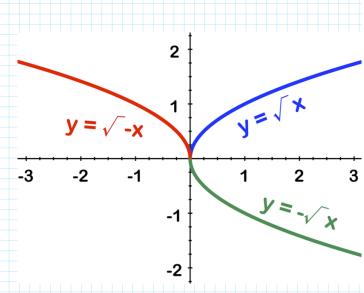


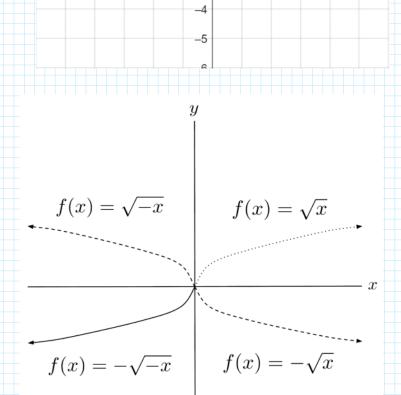












Reflection in x-axis
$$(x, y) \rightarrow (x, -y)$$
Reflection in y-axis $(x, y) \rightarrow (-x, y)$
Reflection in $y = x$ $(x, y) \rightarrow (y, x)$
Reflection in $y = -x$ $(x, y) \rightarrow (-y, -x)$

Calcworkshop.com

2.4 Compressions/Expansions

stretch

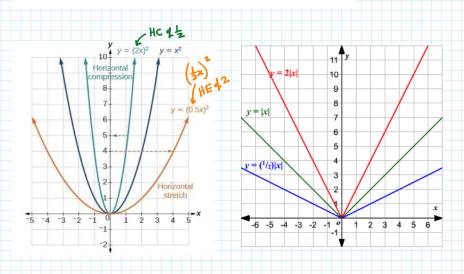
- a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor
- scale factors between 0 and 1 result in the point moving closer to the line of reflection; scale factors greater than 1 result in the point moving farther away from the line of reflection

Vertical and Horizontal Stretches

A **stretch**, unlike a translation or a reflection, changes the shape of the graph. However, like translations, stretches do not change the orientation of the graph.

- When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.
- When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

$$y = f(x) \longrightarrow y = af(bx)$$



Transformation Rules for Functions			
Function Notation	Type of Transformation	Change to Coordinate Point	
f(x) + d	Vertical translation up d units	$(x, y) \rightarrow (x, y + d)$	
f(x) - d	Vertical translation down d units	$(x, y) \rightarrow (x, y - d)$	
f(x + c)	Horizontal translation left c units	$(x, y) \rightarrow (x - c, y)$	
f(x - c)	Horizontal translation right c units	$(x, y) \rightarrow (x + c, y)$	
-f(x)	Reflection over x-axis	$(x, y) \rightarrow (x, -y)$	
f(-x)	Reflection over y-axis	$(x, y) \rightarrow (-x, y)$	
- 6()	Vertical stretch for a >1	(
af(x)	Vertical compression for 0 < a < 1	$(x, y) \rightarrow (x, ay)$	
f(bx)	Horizontal compression for b > 1	$(x,y) \rightarrow \left[\frac{1}{b}, y \right]$	
I(DX)	Horizontal stretch for 0 < b < 1		

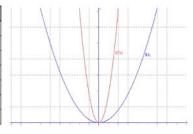
Horizontally Compressed

Example 1

The values and graph of the function f(x) are shown in blue. Make a table and a graph of the function g(x) = f(3x).

Solution

x	f(x)	x	g(x)
-6	36	-2	36
-3	9	-1	9
-1	1	-1/3	1
0	0	0	0
1	1	1/3	1
3	9	1	9
6	36	2	36



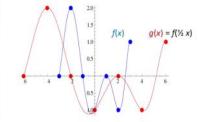
Horizontally Stretched

Example 1

The values and graph of the function f(x) are shown in blue. Make a table and a graph of the function $g(x) = f(\frac{1}{2}x)$.

Solution

x	f(x)	x	g(x)
-3	0	-6	0
-2	2	-4	2
-1	0	-2	0
0	-1	0	-1
1	0	2	0
2	-1	4	-1
3	1	6	1



Vertical Stretches y-k = af(x-h)

In general, for any function y = f(x), the graph of the function y = a f(x) has been vertically stretched about the x-axis by a factor of |a|.

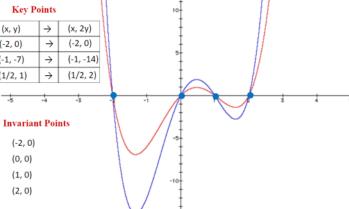
The point $(x, y) \rightarrow (x, ay)$. Only the y coordinates are affected.

Invariant points are on the line of stretch, the x-axis. are the x-intercepts.

When |a| > 1, the points on the graph move farther away from the x-axis. y = 3f(x) Vertical stretch by a factor of 3

When |a| < 1, the points on the graph move closer to the x-axis. $y = \frac{1}{3} f(x)$ Vertical stretch by a factor of %

Vertical Stretching y = af(x), |a| > 1y = 2f(x)A vertical stretch about the x-axis by a factor of 2. **Key Points** \rightarrow (x, y) (x, 2y) (-2, 0)(-2, 0) \rightarrow (-1, -7) (-1, -14)(1/2, 1)



Key Ideas

• Any point on a line of reflection is an invariant point.

	Transformation from		
Function	y = f(x)	Mapping	E <i>x</i> ample
y = -f(x)	A reflection in the x-axis	$(x, y) \rightarrow (x, -y)$	y = f(x) $y = -f(x)$
y = f(-x)	A reflection in the y-axis	$(x, y) \rightarrow (-x, y)$	y = f(x) $y = f(x)$
y = af(x)	A vertical stretch about the x -axis by a factor of $ a $; if $a < 0$, then the graph is also reflected in the x -axis	$(x, y) \rightarrow (x, ay)$	y = af(x), a > 1 $y = f(x)$
y = f(bx)	A horizontal stretch about the y-axis by a factor of $\frac{1}{ b }$; if $b < 0$, then the graph is also reflected in the y-axis	$(x, y) \rightarrow \left(\frac{x}{b}, y\right)$	y = f(bx), b > 0 $y = f(bx), b > 0$

happened?

Using your knowledge of transformations of graphs match up the transformations of the function with the graph. The first one is done for you.

