Plan For Todays

1. Sorry, need more time to mark U1 Exam. We will go over it tomorrow...
2. Any Questions?
3. Start Chapter 3: Polynomial Functions
\checkmark 3.1: Characteristics of Polynomial Functions
\checkmark 3.2: Equations \& Graphs of Polynomials Functions
業 3.3: The Remainder Theorem

* 3.4: Factoring Review \& The Factor Theorem
3.5: Applications \& Word Problems

4. Work on practice questions from Workbook

Plan Going Forwards

1. Work on 3.1-3.2 practice from the workbook for tomorrow.

CHECR-NN @UOZ ON WIEDNESDAY. MAY ISTH

2. We will continue Chapter 3 Polynomials tomorrow and finish it on Thursday. We will do an intro to Ch4 on Thursday if time.

* CHAPTER 3 PROJECT DUE TUESDAY. MAY ZTST * CHAPTER 3 TEST ON TUESDAY. MAY 2IST

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at anurita.weebly.com after class. Anurita Dhiman = adhiman@sd35.bc.ca

Polynomial functions $=$ whole $\#$ degrees
$=$ not including radicals like \sqrt{x} + rationals like $\frac{1}{x}$

Characteristics $\&$ Graphs.

$$
\text { or } O x^{\circ}
$$

Even Degrees $+(t) L C$

$$
\text { ex: } f(x)=x^{2}
$$

RI ${ }_{\uparrow}^{\text {QI }}$

$$
\begin{aligned}
& \text { "up tup" } \\
& \text { "up mo to } O I I T+Q I "
\end{aligned}
$$

Even Degree $+\leftrightarrow) L C$

$$
\text { ex, } f(x)=-x^{2}
$$

ODD Degree $t(t) L C$

$$
\text { ex: } f(x)=x
$$

x-intercepts
\rightarrow aka: zeros, roots, solutions
\rightarrow maximum \#of x-intercepts $=n$ (degree of function)
Note: even degrees can have zero x-intercepts

$$
\text { ex: } \quad \mid \mathfrak{|} y=x^{2}
$$

\therefore even-degrees hare $0-n \quad x$-intecepts.

$$
\begin{aligned}
& \text { degree }=\text { highest degree }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \\
& \text { leading } \\
& \text { coefficient } \\
& \text { constant } \\
& \text { term } \\
& =y \text {-intercept } \\
& =\text { if no } C \text {, then } \\
& C=0
\end{aligned}
$$

$$
\text { ex: } \begin{aligned}
y & =x^{4}+3 x+5 \\
& =0-4 \text { possible } x \text {-intercepts. }
\end{aligned}
$$

Note: ODD degrees must hove at least 1 x-int. b / c of end behaviour going daw top.
\therefore ODD degrees have $1-n$ possible x-intercepts

ex: $y=x^{7}+x^{2}+x+10$

$$
=1-7 x \text {-intercepts. }
$$

Multiplicity $=$ how often an x-intercept occurs + it's based on the exponent of the x when factored.

$$
\begin{aligned}
& \text { ex: } f(x)=(x+1)(x+2)(x+3) \text { notice } x^{3}=\text { ODD } d+L C \\
& \begin{array}{llll}
\text { (1) Determine } \\
x \text {-intercepts }
\end{array} \quad \downarrow \begin{array}{ll}
-1 & -2 \\
&
\end{array}(x, y) \begin{array}{l}
y=0 \\
\text { for } \\
x \text {-intercepts }
\end{array} \\
& \text { (2) Determine MI MI MI } \\
& (-1,0),(-2,0),(-3,0)
\end{aligned}
$$ multiplicity $\quad 1$

\therefore MI means the line goes straight through the x-int.

$$
\begin{aligned}
& \text { ex: } y=x(x+2)^{2}(x-5) \\
& x-\text { int }= \\
& \text { multiplicity }= \\
& \text { mi }
\end{aligned}
$$

- ก.. II. co-int interminod bu making $x=0$ \& written as (x, y)
* Recall: y-int determined by making $x=0$ \& written as (x, y)

$$
y-\ln t=0(0+2)^{2}(0-5)^{2}=0 \quad(0,0)
$$

M2 = draw graph touching x-intercept but not going through.

$$
\begin{aligned}
& \text { ex: } y=-(x+6)^{2}(x+2)(x-4)^{3} \\
& x-\operatorname{lin} t=l_{-6}^{\downarrow} \quad-2
\end{aligned}
$$

$$
\begin{aligned}
\text { Degree }= & 6=\text { even } \\
L C= & (\rightarrow) \\
y-\operatorname{Int}= & (0,4608) \\
& -(0+6)^{2}(0+2)(0-4)^{3}
\end{aligned}
$$

$$
-(36)(2)(-64)=4608
$$

μ_{3} = line goes through but flattens like a cubic function

3.1 p.118 Turning Points

$$
4 \text { changes indirection \& the grogh. }
$$

ex: $y=x=0$ turnig ponts OTP

$$
y=x^{2}=1 T P
$$

$$
y=x^{3}=0,2 T P \quad \text { (not } 1 T P \text { b/e its seren } \begin{gathered}
\text { degrec) }
\end{gathered}
$$

$$
y=x^{4}=1,3 T P \quad \text { (not o a e } 2 b / \text { these } \begin{gathered}
\text { ore for od od dgexes) }
\end{gathered}
$$

$$
y=x^{3}=0,2,4 \mathrm{TP}
$$

$$
y=x^{6}=1,3,5 \mathrm{TP}
$$

3.2 cont.

IF \rightarrow you are given x-intercepts + Multiplaty or a graph you can get the x-int. from; use this to generate on equation m this form

$$
\begin{aligned}
& m \text { this form } 2 \\
& y=a \underbrace{\left(x-p_{1}\right)^{n_{1}\left(x-p_{2}\right)^{r_{2}}} \text { etc... multiplicity }}_{x \text {-intercepts }} \text { et }
\end{aligned}
$$

THEN \rightarrow use another point given or on graph to substitute for $(x, y)+$ solve for ' a '
(4 Ki rex 79)

$$
\begin{array}{ll}
\text { Ex: } 4 & \text { roots }=-1,-1,0,2 \\
& p(1)=5 \rightarrow=\text { coordinate }(1,5)
\end{array}
$$

$x=-1$	(1)	
$x+1=0$	generate equation	x $(x+1)$
	(2)	5

$\begin{aligned} & \text { sub. the } \\ & \begin{array}{l}\text { x } \\ \text { coordinate }\end{array} \\ & \text { col }\end{aligned} \quad 5=a(1)(\underbrace{(1+1}_{2^{2}})^{2}(\underbrace{1-2}_{-1})$ Bedmas. $\begin{aligned} & t \text { solve } \\ & \text { for ' } a \text { ' }\end{aligned} \frac{5}{-4}=\frac{-4 a}{-4}$

$$
a=-\frac{5}{4}
$$

(3) rewrite
final $y=-\frac{5}{4} x(x+1)^{2}(x-2)$ equation

Ex 6 p. 125 .

(1) x-int + multiplicity

$$
=-3 M_{1}, O M_{2}, 2 M_{1}, 3 \mu_{1}
$$

(2) other point $=(-1,-3)$
(3) equation

$$
\begin{aligned}
& y=a x^{2}(x+3)(x-2)(x-3) \\
& -3=a(-1)^{2}(-1+3)(-1-2)(-1-3) \\
& -3=a(1)(2)(-3)(-4) \\
& -\frac{3}{24}=\frac{24 a}{24} \\
& a=-\frac{1}{8}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \text { wite } \\
& \text { find } \\
& \text { cencutix } \\
& y=-\frac{1}{8} x^{2}(x+3)(x-2)(x-3)
\end{aligned}
$$

What is a polynomial function?

Polynomial Function Expression

Polynomial Function: Expanded Form

$$
f(x)=2 x^{4}-x^{3}+2 x^{2}-7
$$

monomial	$\frac{2 x}{1}$
binomial	$\frac{2 x+\frac{3 y}{1}}{2}$
trinomial	$\frac{2 x^{2}+\frac{3 x}{2}+\frac{5}{3}}{1}$
polynomial	$\frac{3 x^{3}}{1}+\frac{2 x^{2}-\frac{6 x}{2}+\frac{2}{4}}{4}$

Non-Examples of Polynomials

$\frac{a^{2}}{b^{3}}$	Fractions, Division

Square Roots $\sqrt{x^{2}+2 x+2}$
$9^{2 x}$ Variables as the exponent
Negatives as the exponent $8 x^{-3}=\frac{8}{x^{3}}$

POI. YNOMIAI. ORNOT?

Shade each polynomial. If it is not a polynomial, explain why.

Types of Polynomial

Types of Polynomial (Number of Terms)

Types of Polynomial (Degree)

| Constant |
| :---: | :---: | :---: |
| Polynomial |
| (Degree 0) |
| 8 |
| $-\frac{2}{3}$ |
| Linear |
| (Degree 1) |
| $x+8$ |
| $\frac{3}{4} x-6$ | | Quadratic |
| :---: |
| Polynomial |
| (Degree 2) |
| $3 x^{2}-2 x+7$ |
| $5 y^{2}-\frac{1}{4}$ | | Cubic |
| :---: |
| Polynomial |
| (Degree 3) |
| $5 x^{3}$ |
| $2 y^{3}-y+4$ |

$2 x^{3}+8 x^{2}-17 x-3$

TERM	$2 x^{3}$	$8 x^{2}$	$-17 x$	-3
DEGREE OF TERM	3	2	1	0
DEGREE OF POLYNOMIAL	3			
LEADING TERM	$2 x^{3}$			
LEADING COEFFICIENT	2			
CONSTANT TERM	-3			

Examples of Polynomial Functions

Examples of Nonpolynomial Functions

If " n " is even, the graph of the polynomial is " U -shaped" meaning it is parabolic (the higher the degree, the more curves the graph will have in it).
https://www.slideshare.net/morrobea/63evaluatingandgraphingpolynomilafunctions

If " n " is odd, the graph of the polynomial is "snake-like" meaning looks like a snake (the higher the degree, the more curves the graph will have in it).

The end behavior of a polynomial function's graph is the behavior of the graph as \boldsymbol{x} approaches infinity $(+\infty)$ or negative infinity $(-\infty)$. The expression $x \longrightarrow+\infty$ is read as " x approaches positive infinity."

Even Degree
Positive Leading Coefficient, $a_{n}>0$
End Behavior: $x \rightarrow \infty, f$ $x \rightarrow-\infty, f(x) \rightarrow \infty$ for $+\infty$, the graph extends up into QI.

| Odd Degree |
| :---: | :---: |
| Positive Leading |
| Coefficient, $a_{n}>0$ |

Even Degree
Negative Leading Coefficient, $a_{n}<0$
 Er $+\infty$, the graph extends down into QiV.

$\left.\begin{array}{c|c|}\substack{\text { Negative Leading } \\ \text { Coefficient, } a_{n}<0} \\ \text { Odd Degree } \\ \text { End Behavior: } \\ x \rightarrow \infty, f(x) \rightarrow-\infty \\ x \rightarrow-\infty, f(x) \rightarrow \infty\end{array}\right)$

Degree is odd

Leading Start low, coefficient is positive	End high
Leading coefficient is negative Start high, End low	

Degree is even

Leading coefficient is positive	Start high, End high
Leading Start low, coefficient End low is negative	

Leading is negative

End low

Degree and Leading coefficient tells us the behaviour of the graph.

$$
\begin{aligned}
& y=-x^{4}+2 x^{3}-x^{2}+3 x+20 \quad \text { Negative even } \\
& y=-10 x^{5}-3 x^{3}+2 x-4 \quad \text { Negative odd } \\
& y=(x+5)(x-3)(2 x+4) \quad \text { Positive odd } \\
& x(x)(2 x)=2 x^{3} \\
& y=x(x-4)^{2}(3 x+1) \quad \text { Positive even } \\
& x(x)^{2}(3 x)=3 x^{4} \\
& \left.y=x^{2}(3-x)(x)+4\right)^{3} \quad \text { Negative even } \\
& x^{2}(-x)(x)^{3}=-x^{6}
\end{aligned}
$$

Determine the left and right behavior of the graph of each polynomial function.

$$
f(x)=x^{4}+2 x^{2}-3 x
$$

Even, Leading coefficient 1 (positive), starts high ends high

$$
f(x)=-x^{5}+3 x^{4}-x
$$

Odd, Leading coefficient 1 (negative), starts high ends low

$$
f(x)=2 x^{3}-3 x^{2}+5
$$

ODD, Leading coefficient 2 (positive) , starts LOW ends HIGH

Degree tells us the number of possible x-intercepts (roots or zeros)
Degree tells us the possible number of turns in the graph

$$
\begin{array}{cc}
\qquad(x, 0) & (0, y) \\
\uparrow & \uparrow \\
x \text {-intercept } & y \text {-intercept }
\end{array}
$$

https://slideplayer.com/slide/9143093/

3.1 Characteristics of Polynomials Summary Sheet

Type of Function	Constant $y=x^{0}+C$	$\begin{aligned} & \text { Linear } \\ & y=a x+C \rightarrow \\ & y=a x^{1}+C \end{aligned}$	$\begin{gathered} \text { Quadratic } \\ y=a x^{2}+b x+C \end{gathered}$	Cubic $y=a x^{3}+b x^{2}+c x+C$
Degree, n	0, zero	1	2	3
End Behaviour	If constant is positive \rightarrow Quadrant II to I If constant is negative \rightarrow Quadrant III to IV	If leading coefficient is positive \rightarrow Quadrant III to 1 If leading coefficient is negative \rightarrow Quadrant II to IV	If leading coefficient is positive \rightarrow Quadrant II to I If leading coefficient is negative \rightarrow Quadrant III to IV	If leading coefficient is positive \rightarrow Quadrant III to I If leading coefficient is negative \rightarrow Quadrant II to IV
Number of x-intercepts	0 unless the constant functions lies on the y axis, then all points are the x-intercepts	1	0,1, or 2	1,2, or 3
Number of y-intercepts	1	1	1	1
Number of turning points	0	0	1	0 or 2
Domain	$\{x \mid x \in R\}$			
Range	$\{y \mid y=C, y \in R\}$	$\{y \mid y \in R\}$	$\begin{aligned} & \{y \mid y \geq \text { vertex, } y \in R\} \\ & \text { or } \\ & \{y \mid y \leq \text { vertex, } y \in R\} \end{aligned}$	$\{y \mid y \in R\}$

HOW TO FIND ExAMPLES X \& Y INTERCEPTS
 $f(x)=x^{2}+5 x+6$
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">x-intercept $(x, 0)$</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">y-intercept $(0, y)$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$0=x^{2}+5 x+6$</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$\mathbf{y}=0^{2}+\mathbf{5}(0)+\mathbf{6}$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$0=(x+3)(x+2)$</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$\mathbf{y}=\mathbf{6}$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$\mathbf{x}=-3 \quad \mathbf{x = - 2}$</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$(-3,0)(-2,0)$</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| x-intercept $(x, 0)$ | y-intercept $(0, y)$ |
| :---: | :---: |
| $0=x^{2}+5 x+6$ | $\mathbf{y}=0^{2}+\mathbf{5}(0)+\mathbf{6}$ |
| $0=(x+3)(x+2)$ | $\mathbf{y}=\mathbf{6}$ |
| $\mathbf{x}=-3 \quad \mathbf{x = - 2}$ | |
| $(-3,0)(-2,0)$ | |</table-markdown></div>

Example: How many roots will the following functions have?

$$
\begin{aligned}
& y=-x^{(4)}+2 x^{3}-x^{2}+3 x+20 \quad 4 \text { roots } \\
& \text { MIN-MAX } \\
& y=-10 x^{5}-3 x^{3}+2 x-4 \\
& 5 \text { roots } \\
& 1-5 \\
& y=x(x-4)^{2}(3 x+1) \\
& 4 \text { roots } \\
& x(x)^{2}(3 x)=3 x^{4} \\
& y=x^{2}(3-x)(x+4)^{3} \quad 6 \text { roots } 0-6 \\
& x^{2}(-x)(x)^{3}=-x^{6}
\end{aligned}
$$

How many zeros do these graphs have? ???

3.4 Multiplicity

Multiplicity is the number of times an x-intercept occurs in a graph:

Roots

Multiplicity of roots

Single root Example: Factor $(x+2)$
root: -2
graph goes straight through root

double root Example: Factor $(\mathrm{x}-1)^{2}$ root: 1 (M2)
graph goes through the root like a

 quadratic
triple root Example: Factor $(x+4)^{3}$ root: -4 (M3)
graph goes through the root like a cubic

$$
f(x)=(x-1)(x-4)^{2} \overbrace{}^{2}
$$

If you factor the polynomial, you can see the value of the x-intercepts (roots) and the corresponding multiplicity

Real roots are x-intercepts.
To find the roots, we let $\mathrm{y}=0$ and solve for x .

Example: Find the roots for the following.

$$
\begin{aligned}
& y=(x+5)(x-3)(2 x+4) \quad \text { Roots: }-5,3,-2 \\
& y=x(x-4)^{2}(3 x+1) \quad \text { Roots: } 0,4(\mathrm{M} 2),-\frac{1}{3} \\
& y=x^{2}(3-x)(x+4)^{3} \quad \text { Roots: } 0(\mathrm{M} 2), 3,-4(\mathrm{M} 3)
\end{aligned}
$$

To find the y-intercept, make $x=0$ and solve for y :
Example: Find the y-intercept for each

$$
\begin{array}{ll}
y=(x+5)(x-3)(2 x+4) & y \text {-intercept: }(0,-60) \\
y=-x^{4}+2 x^{3}-x^{2}+3 x+20 & y \text {-intercept: }(0,20) \\
y=x^{2}(3-x)(x+4)^{3} & y \text {-intercept: }(0,0)
\end{array}
$$

To graph a polynomial function:

1. Determine the y-intercept by making $x=0$
2. Determine the x-intercepts by solving the polynomial when $y=0$
(or vou can use vour araphina calculator to find these

3. Determine the x-intercepts by solving the polynomial when $y=0$
(or you can use your graphing calculator to find these characteristics)
4. Use the degree and leading coefficient to determine behaviour.
5. Use the table of values to estimate the relative and/or absolute Max's and Min's and get other points.
6. Draw the curve with the correct behaviour.

Coordinates of relative maximum

Graph $f(x)=x^{3}+x^{2}-4 x-1$.

SOLUTION

To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

Graph $f(x)=-x^{4}-2 x^{3}+2 x^{2}+4 x$.

SOLUTION

To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

x	-3	-2	-1	0	1	2	3	
$f(x)$	-21	0	-1	0	3	-16	-45	

Now we are ready to graph.
State the type, roots, y-intercept and graph.
$y=2(x-3)(x+4)(x-1)$

Type: positive odd
roots: $3,-4,1$
y-intercept: $(0,24)$

$$
\begin{aligned}
y= & -x^{6}+15 x^{4}+10 x^{3}-60 x^{2}-72 x \\
& =-x(x+2)^{3}(x-3)^{2}
\end{aligned}
$$

KEY Characteristics Practice

Determine the characteristics of the following polynomial functions.

1. $f(x)=x^{3}+x^{2}-x-2$
2. $f(x)=x^{4}-4 x^{3}+2 x^{2}+x+4$
3. Degree $=3$
4. Degree $=4$
5. Leading Coefficient $=$
6. Leading Coefficient $=1$
7. Positive/ Negative $=$
8. Positive/ Negative $=$
9. \quad Behaviour $=$
down into QII of up into QI
10. \# of turning points =
11. \# of x-intercepts = 1-3
12. y-intercept $=$

$$
(0,-2)
$$

7. y-intercept $=$

$$
(0,4)
$$

3. $f(x)=x^{5}-4 x^{3}+4 x-1$
4. $f(x)=-x^{2}-6 x-7$
5. Degree $=5$
6. Leading Coefficient $=$
7. Positive/Negative $=$
8. \quad Behaviour $=$ dewninto QIII tupi into QI
9. \# of turning points = $0,2,4$
10. \# of x -intercepts = $1-5$
11. y -intercept $=$

$$
(0,-1)
$$

1. Degree $=2$
2. Leading Coefficient $=-1$
3. Positive/ Negative $=$
4. Behaviour $=$ down into QIIT + down into OUI
5. \# of turning points =
6. \# of x -intercepts =
7. y-intercept $=$

$$
(0,-7)
$$

5. $f(x)=-x^{3}+10 x^{2}-33 x+32$
6. $f(x)=-x^{4}+3 x^{3}-5 x-2$
7. Degree $=3$
8. Degree $=4$
9. Leading Coefficient $=-1$
10. Positive $/$ Negative $=-$
11. Behaviour $=u p$ into $Q \mathbb{I}$

4 dan into QII
5. \# of turning points = 0,2
6. \# of x -intercepts = 1-3
7. y-intercept $=$

$$
(0,32)
$$

2. Leading Coefficient $=-\mathbf{I}$
3. Positive $/$ Negative $=$
4. Behaviour $=$ dam into QIII town into QII
5. \# of turning points $=1,3$
6. \# of x -intercepts = 0-4
7. y-intercept $=$ (0,-2)
