Plan For Today:

For example, divide $x^3 + 4x^2 - 2x - 5$ by x + 1

1. Work on 3.3-3.5 practice from the workbook for tomorrow.

* CHECK-IN QUIZ ON THURSDAY, MAY 16TH

2. We will finish/review Chapter 3 Polynomials tomorrow and possibly start an intro to Ch4 on Thursday if time.

* CHAPTER 3 PROJECT DUE TUESDAY, MAY 21ST

* Chapter 3 test on tuesday, May 21st

VICTORIA DAY ON MONDAY, MAY 20TH - SCHOOL CLOSED

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at <u>anurita.weebly.com</u> after class. Anurita Dhiman = adhiman@sd35.bc.ca

Name :	 Score :	
Teacher :	 Date :	

Identify which graph represents the given polynomial function.

1) $y = -x^2 - 2x + 2$

Name :	 Score :	
Teacher :	 Date :	

Identify which graph represents the given polynomial function.

3) y = -5x - 4

4)
$$y = -x^3 - 2x^2 + x + 1$$

C)

Name :	 Score :	
Teacher :	 Date :	

Identify which graph represents the given polynomial function.

5) $y = x^3 - 2x^2 - 2$

Name :	 Score :	
Teacher :	 Date :	

Identify which graph represents the given polynomial function.

7) $y = -x^3 - x^2 + x + 2$

C)

Name :	 Score :	
Teacher :	 Date :	

Identify which graph represents the given polynomial function.

9) $y = -x^4 + x^3 - x^2 - 2x + 1$

10)
$$y = x^4 - 2x^3 + 2x^2 + 1$$

C)

Name :	Score	e:
Teacher :	Date	:
(KEY) Identif	y Polynomial Functi	ons
Identify which graph repre	sents the given polynomial function.	
1) $y = -x^2 - 2x + 2$	A)	3)
<u>_C</u>		-5 / 5
	-5	-5
	C) 5 D	
	-5 5	-5 5
		-5
2) $y = 3x^2 + 2x + 2$	A)	3)
<u> </u>		
		-5
	-5 5	-5 5
		L - 5
		Math-Aids.Com
		Algebra 2 Worksneets

Name :	 Score :	
Teacher :	 Date :	

Identify which graph represents the given polynomial function.

3) y = -5x - 4

D

-5

C)

4)
$$y = -x^3 - 2x^2 + x + 1$$

Α

Name :	 Score :	
Teacher :	 Date :	

Identify which graph represents the given polynomial function.

5)
$$y = x^3 - 2x^2 - 2$$

В

6) y = 5x + 2

Α

Name :	 Score :	
Teacher :	 Date :	

Identify which graph represents the given polynomial function.

7)
$$y = -x^3 - x^2 + x + 2$$

В

D

Name :	 Score :	
Teacher :	 Date :	

Identify which graph represents the given polynomial function.

9)
$$y = -x^4 + x^3 - x^2 - 2x + 1$$

В

10)
$$y = x^4 - 2x^3 + 2x^2 + 1$$

С

C)

Wednesday, May 15th In-Class Notes Review p. 129 #7 abc b) O_{M2} , 1, 1, 1, 2 P(-1) = 12M3 Xey yerz $f(x) = \alpha x^{2} (x-1)^{3} (x-2)$ $12 = \alpha (-1)^{2} (-1-1)^{3} (-1-2)$ X=7 $\chi = 1$ -16-1 x-2=0 $\chi - 1 = 0$ (x-1) (2-2) $12 = \alpha(-1)^{2}(-2)^{3}(-3)$ 12=a(1)(-8)(-3)12= 24a $\rightarrow \left(\rho(x) = \frac{1}{2} x^2 (x-1)^3 (x-2) \right)$ a=± Dividing Polynomials = $\frac{P(x)}{x-\alpha}$ by Binomials. 3.3 EX3 p. 133 is great for notes! add in missing dogrees with zero $E_{x4} \rho \cdot 134 \quad \rho(z) = 4z^5 - 30z^3 - 50z + 2 = z + 3$ $4x^5 + 0x^4 - 30x^3 + 0x^2 - 50x + 2$ write all coefficients for Synthetic () write the 0 -30 0 -50 2 all degrees in order THOD PAD THE PAD THOD x-value Bivision : from highest to lovest. from 7-12 736 718 54 -12 binomial -12-43 - Remainder = -10 (2) any numbers below the line multiply by x - Value From binomical these coefficients form the quotient. * quotient begins at z^{m1} any numbers above the live ADD $4x^4 - 12x^3 + 6x^2 - 18x + 4 - \frac{10}{2+2}$ $OR \left(x+3 \right) \left(4 x^{4} - 72 x^{3} + 6 x^{2} - 18 x + 4 \right) - 10$ $6x^{4} - 7x^{3} + 4x^{2} - 11x + 9 + 2x - 1 = 0$ $x = \frac{1}{2}$ Ex6

Section 3.3: Practice Dividing Polynomials

Do long division AND synthetic division for each of the following and write the division statement at the end.

1.
$$(x^3 + 7x^2 + 14x + 3) \div (x+2)$$

Long Division
 Synthetic Division

$$x+2)\overline{x^3+7x^2+14x+3}$$
 $x+2$
 $x^3+7x^2+14x+3$
 $-x^3+2x^2$
 $-x^3+2x^2$
 -2
 -10
 $5x^2+14x$
 -2
 -10
 -8
 -5
 -5
 x
 -2
 -5
 $x + 2$
 $x^3 + 7x^2 + 14x + 3$
 -2
 -14
 3
 -5
 -5
 -2
 -10
 -8
 x
 -5
 -2
 -70
 -8
 x
 -5
 $x^2 + 5x + 4$
 -5
 $x + 2$
 -5
 $x + 2$
 $x^3 + 7x^2 + 14x + 3$
 $x + 2$
 -5
 $x + 2$
 $x^3 + 7x^2 + 14x + 3$
 $x + 2$
 $x + 2$
 $x + 2$
 -5
 $x + 2$
 $x + 3$
 $x + 2$
 x

Division Statement:

$$\frac{x^3 + 7x^2 + 14x + 3}{x + 3} = x^2 + 5x + 4 - \frac{5}{x + 2}$$

2. $(10x^3 + 37x^2 + 37x + 6) \div (x + 2) = \chi^2$ Synthetic Division x+2 $10x^3 + 37x^2 + 37x + 6$ 10 37 37 6 -2 -20 -34 -6 10 17 3 ° no remainder +х $10x^2 + 17x + 3$ SHORT-CUT \Rightarrow AC 30 quotrent. AC = 30 +15 +2= 17 Notice you can factor the quadratic further: $\underbrace{10x^2 + 15x}_{GF_2 5x} + \underbrace{2x}_{GF_1} + \underbrace{3}_{GF_1}$ e ± constant mln e coest. with x 5x(2x+3)+ i(2x+3) → [2x+3)(5x+1) (2x+3)(5x+1) In this case this polynomial can be fully factored to the following: $(x+2)(2x+3)(5x+1) = 10x^3 + 37x^2 + 37x + 6$ 1 original polynomial $\frac{(x+2)(2x+3)(5x+1)}{(x+2)} = \frac{10x^3 + 37x^2 + 37x+6}{(x+2)}$ $(2x+3)(5x+1) = \frac{10x^3+37x^2+37x+6}{x+2}$ original question quotient Remander Theorem $P(\alpha) = R$ for $\frac{P(\alpha)}{7-\alpha}$ (i) use `a' value from binomial + substitute into 'x' of polynomial (2) evaluate to determine remainder. $p.143 \# 1 Ex : P(x) = x^4 + 3x^3 - 7x + 2$ (x-a) = (x+2)find the remainder for $\frac{P(y)}{x-\alpha} = \frac{2x^4+3x^3-7x+2}{x+2}$ (1) $\chi + 2 \rightarrow \chi = 3$ (3) $\beta(-2) = (-2)^{4} + 3(-2)^{3} - 7(-2) + 2$ 3 evaluate = 16 - 24 + 14 + 2 Remainder = 8 $\#_{2} p.143$ 20 $2x^{4} + kx^{2} - 3x + 5 \div x - 2$ R= 3 solve for le

4,12

(1) x-2 -> x=2

solve for k
(1)
$$z-2 \rightarrow x=2$$

(2) $P(2) \rightarrow 2(2)^{2} + k(2)^{2} - 3(2) + 5 = 3$
(3) solve for k' $32 + 4k - 6 + 5 = 3$
 $4k + 31 = 3$
 $4k = -28$
 $k = -7$
heorem

Factor Theorem

For $\frac{P(x)}{x-a}$, P(a) = 0 (remainder is zero) x-a when x-ais a factor $d_i P(x)$

EX:
$$P(x) = 2x^3 - 7x^2 + 2x + 3 \div x - 1$$

= 15 x-1 a factor of $P(x)$?

(a)
$$P(1) = 0? = \underline{15}$$
 a factor
 $\neq 0 = \underline{N0T}$ a factor
 $2(1)^3 - 7(1)^2 + 2(1) + 3 =$
 $2 - 7 + 2 + 3 = 0$
VES : $(x - 1)$ 15 a factor of $P(x)$
 b/c the remainder is zero.

IF the binomial 15 a factor, do synthetic division
+ fully factor the polynomial.
Note: IF the degree
$$d$$
 P(x) is $n>3$, find extra
factors.: use synthetic division until
guotient is x^2 for trinomial factoring
 x_{-1} $2x^3 - 7x^2 + 2x + 3$
 $x + 2x^2 - 5x - 3$
Ac b $2x^2 - 5x - 3$
AC b $2x^2 - 5x - 3$
 $x + 2x^2 - 5x - 3$
AC b $2x^2 - 5x - 3$
 $x + 2x^2 - 5x - 3$
 $2x^2 - 5x - 3$
 $2x(x-3) + (x-3)$
 $2x(x-3) + (x-3)$
 $(x - 3)(2x + 1)$
Final answer
tigethor
 $x = 1$ $x = 3$ $x = -\frac{1}{2}$ if guestimesays
solve.

togetw

$$\begin{array}{c} \chi_{21} \quad \chi_{23} \quad \chi_{2} \quad \chi_{2}$$

solve

5 アニ

2

together

 $2x^{2} + 3x - 2 \qquad AC = -4$ $(2x - 1)(x + 2) \qquad +1, -1 = 3$ z = 2Final Solution $(x + 3)(x - 2)(2x - 1)(x + 2) \qquad +2$ +2 = 2x - 1 +2 = 2x - 1χ+2 Solutions: x=-3,2,2,-2 or morder x=-3,-2,2,2

Remainder Theorem

If a polynomial f(x) is divided by (x - a), the remainder is f(a). f(x) = (x - a) Q(x) + f(a)

Factor Theorem

A polynomial f(x) has a factor (x - a) if and only if f(a) = 0.

3.4 Factoring Review

Common Factor First: GCF = Greatest Common Factor

Factor Out the GCF

The first step to factoring is to factor out the greatest common factor (GCF) from each term.

Factoring Techniques

Difference of Squares

$$a^2 - b^2 = (a+b)(a-b)$$

Examples:

9
$$x^{2}$$
-16
= $(3x)^{2}$ -4²
= $(3x+4)(3x-4)$
4 x^{2} -81 y^{2}
= $(2x)^{2}$ -(9 y)²
= $(2x+9y)(2x-9y)$

Trinomial Factoring Where the Leading Coefficient 'a' = 1

$ax^2 + bx + c$

To factor $x^2 + bx + c$:

- 1. First arrange in descending order.
- **2.** Use a trial-and-error procedure that looks for factors of *c* whose sum is *b*.
 - If *c* is positive, then the signs of the factors are the same as the sign of *b*.
 - If *c* is negative, then one factor is positive and the other is negative. (If the sum of the two factors is the opposite of *b*, changing the signs of each factor will give the desired factors whose sum is *b*.)

3. Check your result by multiplying.

Thus the factorization is

(x + 3)(x + 5), or (x + 5)(x + 3)

by the commutative law of multiplication. In general,

$$(x + p)(x + q) = x^2 + (p + q)x + pq.$$

To factor, we can use this equation in reverse.

Factoring Trinomials with a =1

Factor Trinomial with Negative Leading Coefficient

When the leading coefficient of a polynomial is negative, we can factor out a common factor with a negative coefficient.

Examples:

$$\begin{array}{ll} -5x^2 + x + 4 & -3x^3 + 12x^2 + 15x \\ = -(5x^2 - x - 4) & = -3x(x^2 - 4x - 5) \\ = -(5x^2 - 5x + 4x - 4) & = -3x(x^2 - 5x + x - 5) \\ = -(5x(x - 1) + 4(x - 1)) & = -3x(x(x - 5) + (x - 5)) \\ = -(5x + 4)(x - 1) & = -3x(x + 1)(x - 5) \end{array}$$

Perfect Square Trinomials (PST) $a^2 + 2ab + b^2 = (a+b)(a+b) = (a+b)^2$ $a^2 - 2ab + b^2 = (a-b)(a-b) = (a-b)^2$

Examples:

 $x^{2} + 12x + 36 = x^{2} + (2)(6)x + 6^{2} = (3x)^{2} - (3)(2)x + 2^{2} = (x+6)^{2} = (3x-2)^{2}$

There are many methods for factoring a trinomial where $a \neq 1$ 1. The FOIL method is the same as a 'Guess and Check' Method

THE FOIL METHOD

To factor trinomials of the type $ax^2 + bx + c$, $a \neq 1$, using the **FOIL method**:

- 1. Factor out the largest common factor.
- **2.** Find two First terms whose product is ax^2 :

3. Find two Last terms whose product is *c*:

4. Repeat steps (2) and (3) until a combination is found for which the sum of the Outside and Inside products is *bx*:

5. Always check by multiplying.

TIPS FOR FACTORING $ax^2 + bx + c$, $a \neq 1$, USING THE FOIL METHOD

- 1. If the largest common factor has been factored out of the original trinomial, then no binomial factor can have a common factor (other than 1 or -1).
- 2. a) If the signs of all the terms are positive, then the signs of all the terms of the binomial factors are positive.
 - **b**) If *a* and *c* are positive and *b* is negative, then the signs of the factors of *c* are negative.
 - c) If *a* is positive and *c* is negative, then the factors of *c* will have opposite signs.
- 3. Be systematic about your trials. Keep track of those you have tried and those you have not.
- 4. Changing the signs of the factors of *c* will change the sign of the middle term.

1. The AC Method here is the Decomposition method; also knows as the Factor by Grouping method.

THE ac-METHOD

To factor $ax^2 + bx + c$, $a \neq 1$, using the *ac*-method:

- 1. Factor out the largest common factor.
- **2.** Multiply the leading coefficient *a* and the constant *c*.
- 3. Try to factor the product ac so that the sum of the factors is b. That
- is, find integers p and q such that pq = ac and p + q = b.
- **4.** Split the middle term. That is, write it as a sum using the factors found in step (3).
- 5. Factor by grouping.
- 6. Always check by multiplying.

Factoring Polynomials:

Quadratic Trinomials with a Leading coefficient \neq 1

- a) Factoring by Decomposition
- 1. Multiply a and c
- 2. Look for two numbers that multiply to that product and add to b
- 3. Break down the middle term into two terms using those two numbers
- 4. Find the common factor for the first pair and factor it out & then find the common factor for the second pair and factor it out.
- 5. From the two new terms, place the common factor in one bracket and the factored out factors in the other bracket.

 $a \times c = -20$ The 2 nos. are -20 & 1

$$5x^{2} - 19x - 4$$

= $5x^{2} - 20x + 1x - 4$
= $5x(x - 4) + 1(x - 4)$
= $(x - 4)(5x + 1)$

Solving General Trinomials - the Decomposition Methodylaye

The product is 3 x 8 = 24. The sum is -10.

Factors of 24		
1	24	
2	12	
3	8	
4	6	

Rewrite the middle term of the polynomial using -6 and -4. (-6x - 4x is just another way of expressing-10x.)

3x(x-2) - 4(x-2)

(x - 2)(3x - 4)

Factor by grouping.

3. This is the Short-cut Method I like to use.

Decomposition	Short-cut Factoring	
$3x^2 - 19x - 14$	$3x^2 - 19x - 14$	
$A = 3 C = -14 \rightarrow AC = -14$		
A=0, C=-14 / AC=-	$A = 3 C = 14 \rightarrow AC = 42$	
42	$A = 3, C = -14 \neq AC = -42$	
Two numbers that	Two numbers that	
multiply to -42 but add	multiply to -42 but add to	
to -19	-19	
These numbers area 21	These numbers area 21	
These numbers are: -21	These numbers are: -21	
and +2	and +2	
Replace the middle (b)	Place the first term of the	
term with these two	trinomial without the	
factors written with an x	squared in the first spot of	
factors written with an x	squared in the first spot of	
	each factored bracket	
$3x^2 - 21x + 2x - 14$		
	(3x)(3x)	
Split it in half and factor	()()	
Split it in han and factor		
each nail	Place the two factors (-21	
	& +2) in the brackets to	
$3x^2 - 21x + 2x - 14$	form the binomials	
3x(x-7)+2(x-7)		
	(3x-21)(3x+2)	
Place each term in front		
Flace each term in front	Doduce the terms in the	
of the brackets in its	Reduce the terms in the	
own bracket and write	binomials like you would	
the other common	fractions	
binomial in one bracket.		
	$(\frac{1}{2}x,\frac{1}{2})(\frac{1}{2}x+2)$	
(2, 2)(-7)	$(1^{\rho_{X}} - \mu_{A_{7}})(3x+2)$	
(3x+2)(x-7)	=(x-7)(3x+2)	
	(~ ')(** * 2)	
Done		
Done.	Done!	
	+++++++++++++++++++++++++++++++++++++++	
	storing Poviou 9 Drastic	
	ictoring Review & Practice	

Review of Algebra and Factoring

Common Factoring

Determine the greatest common factor by checking what the largest term divisible by all terms is (numbers and variables).

Ex. $2x^2 - 6x \rightarrow \boxed{2x(x-3)}$

Complete the following for practice:

a) $3x^3 - 9x^2$

b) $-8x^3 + 2x^2 - 22x$

Binomial Factoring with a Difference of Squares

When the 2 terms of the binomial are perfect squares and there is a subtraction between them, you can use this method for factoring. Form must be $(a^2 - b^2)$.

Ex.
$$x^2 - 9 \rightarrow (x+3)(x-3)$$
 $4x^2 - 25y^2 \rightarrow (2x+5y)(2x-5y)$

Here, you put the square root of x and the square root of 9 in each bracket with different signs between them: this is the difference of squares factoring.

NOTE: $x^2 + 9$ is a sum of squares and cannot be factored.

Complete the following:

a)
$$a^2 - 16$$
 b) $144 - 9y^2$ c) $36x^2 - 49$

Trinomial Factoring

A trinomial is in the form: $ax^2 + bx + c$. There are different methods for trinomial factoring; including decomposition, guess and check, short-cut factoring, box method. I will show you decomposition and short-cut factoring (I usually do short-cut factoring in class).

When a trinomial has a leading coefficient of 1, the method is simple:

 $x^2 - 4x - 5 \rightarrow C = -5.$

Find two numbers that multiply to -5 but add to -4. Here the two numbers or factors are -5 and +1. Place these two factors in the brackets with x and you're done.

$$x^{2}-4x-5=(x-5)(x+1)$$

When the leading coefficient is not 1, use one of the following methods.

Decomposition	Short-cut Factoring	Another Short-cut Factoring	Box Method
$3x^2 - 19x - 14$	$3x^2 - 19x - 14$	$3x^2 - 19x - 14$	$3x^2 - 19x - 14$
$A = 3, C = -14 \rightarrow AC = -$			
42	A = 3, C = -14 - AC = -42	A = 3, C = -14 - AC = -42	A = 3, C = -14 - AC = -
Two numbers that	Two numbers that	Two numbers that multiply to -42	72
multiply to -42 but add	multiply to -42 but add to	but add to -19	Two numbers that
to -19	-19		multiply to -42 but add
		These numbers are: -21 and +2	to -19
These numbers are: -21	These numbers are: -21	Derwite the trip emiel with the AC	These numbers are: -21
and +2	and +2	as the last term	anu +2
Replace the middle (b)	Place the first term of the	as the fast term	Place the first and last
term with these two	trinomial without the	$x^{2} - 19x - 42$	term in the box in the
factors written with an x	squared in the first spot of		first and last spot
	each factored bracket	Place the two factors (-21 & +2) in	
$3x^2 - 21x + 2x - 14$	(2π) (2π)	the brackets to form the binomials	$\frac{3x^2}{-14}$
Split it in half and fastor	(3x)(3x)		
spin it in nair and factor each half	Dia an tha true for story (21	(x-21)(x+2)	Place the two factors
cuch hun	Flace the two factors (-21 $\& +2$) in the brackets to		with x in the second and
$3x^2 - 21x + 2x - 14$	form the binomials	Divide and reduce the constant in	third box
3r(r-7)+2(r-7)		original trinomial	$3x^2$ -21x
5x(x + 1) + 2(x + 1)	(3x-21)(3x+2)		2x - 14
Place each term in front		$\binom{21}{2}\binom{2}{2} = \binom{2}{2} = \binom{2}{2}$	
of the brackets in its	Reduce the terms in the	$\left(x - \frac{1}{3}\right)\left(x + \frac{1}{3}\right) = (x - 7)\left(x + \frac{1}{3}\right)$	Common factor each
own bracket and write	binomials like you would		and collect the factors in
the other common binomial in one bracket	Ifactions	If there is still a denominator,	two brackets for final
binonnai in one biacket.	(3r-71)(3r+2)	write that number in front of the x	factored form.
(3x+2)(x-7)	$(1^{p_{\Lambda}} \neq \mu_7)(3^{\Lambda+2})$	in the same brackets to get final	
	=(x-7)(3x+2)	factored form.	$3x^*$ -21x 3x 2x -14 2
Done!	. .	(-7)(-2)(-7)(2-2)	x -7
	Done!	$(x-7)[x+\frac{1}{3}] = (x-7)(3x+2)$	
			(3x+2)(x-7)

Complete the following using a method of your choice:

a)
$$6x^2 - 5x - 4$$
 b) $2x^2 + 11x + 5$ c) $2x^2 + x - 1$

d) $2x^2 - 3x - 2$

To solve, you make each binomial bracket equal zero and solve for *x*.

Solving the example from above:

$$(3x+2)(x-7)
3x+2=0 x-7=0
3x=-2 x=7
x=-2
x=-2
x=7$$

Kuta Software - Infinite Algebra 1 Name___ Factoring Trinomials (a = 1)Date_____ Period____ Factor each completely. 1) $b^2 + 8b + 7$ 2) $n^2 - 11n + 10$ 3) $m^2 + m - 90$ 4) $n^2 + 4n - 12$ 5) $n^2 - 10n + 9$ 6) $b^2 + 16b + 64$ 7) $m^2 + 2m - 24$ 8) $x^2 - 4x + 24$ 9) $k^2 - 13k + 40$ 10) $a^2 + 11a + 18$ 11) $n^2 - n - 56$ 12) $n^2 - 5n + 6$ -1-

13)
$$b^2 - 6b + 8$$
14) $n^2 + 6n + 8$ 15) $2n^2 + 6n - 108$ 16) $5n^2 + 10n + 20$ 17) $2k^2 + 22k + 60$ 18) $a^2 - a - 90$ 19) $p^2 + 11p + 10$ 20) $5v^2 - 30v + 40$ 21) $2p^2 + 2p - 4$ 22) $4v^2 - 4v - 8$ 23) $x^2 - 15x + 50$ 24) $v^2 - 7v + 10$ 25) $p^2 + 3p - 18$ 26) $6v^2 + 66v + 60$

Kuta Software - Infinite Algebra 1 Factoring Trinomials (a = 1) Factor each completely. 1) $b^2 + 8b + 7$

$$(b+7)(b+1)$$

Name_____ Date_____ Period____

2)
$$n^2 - 11n + 10$$

 $(n - 10)(n - 1)$

3)
$$m^2 + m - 90$$

(m - 9)(m + 10)
4) $n^2 + 4n - 12$
(n - 2)(n + 6)

5)
$$n^2 - 10n + 9$$

(n-1)(n-9)
(b+8)²
(b+8)²

7)
$$m^2 + 2m - 24$$

(m + 6)(m - 4)
8) $x^2 - 4x + 24$
Not factorable

9)
$$k^2 - 13k + 40$$

(k - 5)(k - 8)
(a + 2)(a + 9)
(a + 2)(a + 9)

11)
$$n^2 - n - 56$$

(n + 7)(n - 8)
(n - 2)(n - 3)

-1-

13)
$$b^2 - 6b + 8$$
14) $n^2 + 6n + 8$ $(b-4)(b-2)$ $(n+2)(n+4)$

15)
$$2n^2 + 6n - 108$$

 $2(n+9)(n-6)$
16) $5n^2 + 10n + 20$
 $5(n^2 + 2n + 4)$

17)
$$2k^2 + 22k + 60$$
18) $a^2 - a - 90$ $2(k+5)(k+6)$ $(a-10)(a+9)$

19)
$$p^2 + 11p + 10$$

(p + 10)(p + 1)
20) $5v^2 - 30v + 40$
 $5(v - 2)(v - 4)$

21)
$$2p^2 + 2p - 4$$

 $2(p-1)(p+2)$
22) $4v^2 - 4v - 8$
 $4(v+1)(v-2)$

23)
$$x^{2} - 15x + 50$$

(x - 10)(x - 5)
24) $v^{2} - 7v + 10$
(v - 5)(v - 2)

25)
$$p^2 + 3p - 18$$

(p - 3)(p + 6)
26) $6v^2 + 66v + 60$
 $6(v + 10)(v + 1)$

Create your own worksheets like this one with Infinite Algebra 1. Free trial available at KutaSoftware.com

Kuta Software - Infinite Algebra 1Name______Factoring Trinomials (a > 1)Date_____ Period___Factor each completely.2) $2n^2 + 3n - 9$

3)
$$3n^2 - 8n + 4$$
 4) $5n^2 + 19n + 12$

5) $2v^2 + 11v + 5$

6) $2n^2 + 5n + 2$

7) $7a^2 + 53a + 28$

8) $9k^2 + 66k + 21$

-1-

9)
$$15n^2 - 27n - 6$$

10) $5x^2 - 18x + 9$
11) $4n^2 - 15n - 25$
12) $4x^2 - 35x + 49$
13) $4n^2 - 17n + 4$
14) $6x^2 + 7x - 49$
15) $6x^2 + 37x + 6$
16) $-6a^2 - 25a - 25$
17) $6n^2 + 5n - 6$
18) $16b^2 + 60b - 100$
 $-2-$

Kuta Software - Infinite Algebra 1Factoring Trinomials (a > 1)Factor each completely.

1)
$$3p^2 - 2p - 5$$

(3p - 5)(p + 1)
(2n - 3)(n + 3)

3)
$$3n^2 - 8n + 4$$

(3n - 2)(n - 2)
(5n + 4)(n + 3)

5) $2v^2 + 11v + 5$ (2v + 1)(v + 5) 6) $2n^2 + 5n + 2$ (2n+1)(n+2)

7) $7a^2 + 53a + 28$ (7a + 4)(a + 7) 8) $9k^2 + 66k + 21$ 3(3k + 1)(k + 7)

-1-

Name_

Date_____ Period____

9)
$$15n^2 - 27n - 6$$

 $3(5n + 1)(n - 2)$
10) $5x^2 - 18x + 9$
 $(5x - 3)(x - 3)$

11)
$$4n^2 - 15n - 25$$

(n - 5)(4n + 5)
(x - 7)(4x - 7)

13)
$$4n^2 - 17n + 4$$
14) $6x^2 + 7x - 49$ $(n-4)(4n-1)$ $(3x-7)(2x+7)$

15)
$$6x^2 + 37x + 6$$

(x + 6)(6x + 1)
(2a + 5)(3a + 5)

17)
$$6n^2 + 5n - 6$$

(2n + 3)(3n - 2)
18) $16b^2 + 60b - 100$
 $4(b + 5)(4b - 5)$

Create your own worksheets like this one with Infinite Algebra 1. Free trial available at KutaSoftware.com

-2-

The factor theorem is when the remainder is zero

Remainder Theorem

If a polynomial f(x) is divided by (x - a), the remainder is f(a). f(x) = (x - a) Q(x) + f(a)

Factor Theorem

A polynomial f(x) has a factor (x - a) if and only if f(a) = 0.

Determining Potential Integral Zeros

List the potential integral zeros of f(x).

 $f(x) = x^3 + 2x^2 - 11x + 20$

Factors of the constant term: $\pm\,1,\pm\,2,\pm\,4,\pm\,5,\pm\,10,\pm\,20$

Potential Zeros: $\pm \{1, 2, 3, 4, 5, 10, 20\}$

Actual Zeros:

P(-5) = 0

Use the Factor Theorem: f(a) = 0

One Factor of the Polynomial is (x + 5)

The graph of the function will have an x-intercept at -5.

Remainder Theorem vs Factor Theorem

Remainder Theorem	Factor Theorem
The remainder theorem states that the remainder when $p(x)$ is divided by $(x - a)$ is $p(a)$.	The factor theorem states that $(x - a)$ is a factor of $p(x)$ if and only if $f(a) = 0$.
It is used to find the remainder.	It is used to decide whether a linear polynomial is a factor of the given polynomial or not

The remainder and factor theorems together are used to solve/factorize polynomials.

(CODING HERO)

Potential Integral Zeros

± {1,3,5,15}

-5, -3, -1

List the possible integral zeros of f(x).

$f(x) = x^3 + 9x^2 + 23x + 15$

Factors of the constant term: $\pm\,1,\pm\,3,\pm\,5,\pm\,15$

Potential zeros:

Actual Zeros: Use the Factor Theorem: f(a) = 0

Factors of the Polynomial: (x + 5) (x + 3) (x + 1)

The graph of the function will have x-intercepts at -5, -3 and -1.

When a polynomial cannot be factored using grouping, you can use the factor theorem to find a factor, then use synthetic division until you get to a quadratic which you can finish with quadratic factoring.

Try P(-1) P(-1) = $(-1)^4 - 4(-1)^3 + 5(-1)^2 + 2(-1) - 8$ = 1 + 4 + 5 - 2 - 8

Since P(-1) = 0, then (x + 1) is a factor

Polynomial Function: Factored Form

 $f(x) = -x(x+2)^{3}(x-3)^{2}$

sign of leading coefficient

x-intercepts (roots) (-2,0), (0,0), (3,0)

Practice Word Problems

Your Turn

Three consecutive integers have a product of -210.

- a) Write a polynomial function to model this situation.
- **b)** What are the three integers?

- **12.** The competition swimming pool at Saanich Commonwealth Place is in the shape of a rectangular prism and has a volume of 2100 m³. The dimensions of the pool are *x* metres deep by 25x metres long by 10x + 1 metres wide. What are the actual dimensions of the pool?
- **13.** A boardwalk that is x feet wide is built around a rectangular pond. The pond is 30 ft wide and 40 ft long. The combined surface area of the pond and the boardwalk is 2000 ft². What is the width of the boardwalk?
- **16.** Three consecutive odd integers have a product of -105. What are the three integers?

- **14.** Determine the equation with least degree for each polynomial function. Sketch a graph of each.
 - a) a cubic function with zeros -3 (multiplicity 2) and 2 and y-intercept -18
 - b) a quintic function with zeros -1 (multiplicity 3) and 2 (multiplicity 2) and y-intercept 4
 - c) a quartic function with a negative leading coefficient, zeros −2 (multiplicity 2) and 3 (multiplicity 2), and a constant term of −6