Plan For Todays

1. Any questions from Chapter 9 Rational Functions?

* Hand-in Chapter 9 Project
* Do Ch9 Test

2. Any questions from 10.1 Term Formula?

* Do 10.1 Check-in Quiz

1. Finish going through 10.2-10.3 practice questions in handout.
10.2-10.3 CHECK-UN @UIZ ON THURSDAY. DEG. TTH
2. We will try to do majority of Topic 10 (Geometric Sequences \& Series) on Thursday and finish it next Tuesday with some review for the Unit 4 exam.

TOPIETO PROJECT DUE TUESDAY. DEC. TETH

UnIT 4 EXAM On CH9 \& T10 On THURSDAY, DEC. 14TH

- Rewrite next Tuesday during olass (last class) on Tuesday, Dec. 19th
- I'll email you when I post marks by Friday or Saturday

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at anurita.weebly.com after class. Anurita Dhiman = adhiman@sd35.bc.ca

Check-in Quiz Section 10.1 - Geometric Sequences

Complete the following questions SHOWING ALL WORK and steps where applicable.

1. Determine if the following sequence IS or IS NOT a geometric sequence. CIRCLE THE CORRECT ANSWER
0.25 each $=1$ mark
a) $2,6,18,54, \ldots$

IS GEOMETRIC
NOT GEOMETRIC
$\frac{6}{2}=3$
b) $8,-2, \frac{1}{2},-\frac{1}{8}, \ldots$ IS GEOMETRIC

NOT GEOMETRIC $r=\frac{-2}{8}$ $r=-\frac{1}{4}$
c) $\underset{4}{1, \frac{3}{2}}, \frac{12}{4}, \frac{60}{8}, \ldots$
IS GEOMETRIC
NOT GEOMETRIC
$r>\frac{3}{2} \quad \frac{93}{4}$
d) $\frac{1}{x}, \frac{2}{x_{\times \frac{2}{2}}^{2}}, \frac{4 \sqrt{x^{3}}}{}, \ldots \frac{\frac{2}{x^{2}}}{\frac{1}{x}} \rightarrow \frac{2}{x^{2}} \times \frac{x}{T} \rightarrow r=\frac{2}{x}$

NOT GEOMETRIC
2. Algebraically determine the common ratio, r, in each of the following geometric sequences:
a) $-48,192,-768,3072, \ldots$

$$
\uparrow \hat{\imath}=\frac{192}{-48}
$$

$r=-4$
b) $2 x, 5 x^{3}, \frac{25}{2} x^{5}, \ldots$ $\frac{5 x^{52}}{2 x}=\frac{5 x^{2}}{2}$
3. Algebraically determine the $8^{\text {th }}$ term, t_{8}, of the following geometric sequence:
$\left.t_{n}=a r^{n-1} \quad n=8 \sum_{a=18.1}^{18.1,1.81,0.181,0.0181, \ldots} \quad\right\rangle=\frac{1.81}{18.1} \quad$ Nor $81 E^{-6}$

$$
\left.\begin{array}{rl}
r=0.1 \\
t_{8} & =18.1(0.1)^{8-1} \longrightarrow t_{8}
\end{array}=18.1(0.1)^{7}\right] \begin{aligned}
t_{8} & =1.81 \times 10^{-6} \\
& =0.00000181
\end{aligned}
$$

4. Algebraically determine the $10^{\text {th }}$ term, t_{10}, of the geometric sequence given the following information:

$$
\begin{aligned}
& a=-32, r=\frac{3}{2} \quad n=10 \\
& t_{10}=-32\left(\frac{3}{2}\right)^{10-1} \\
& t_{10}=-32\left(\frac{3}{2}\right)^{9} \\
& =-32\left(\frac{19683}{5+2}\right) \\
& t_{10}=-\frac{19683}{16}
\end{aligned}
$$

5. Algebraically determine which term of the following geometric sequence is $\mathbf{1 4 3 4 8 9 0 7}$:

$$
\begin{aligned}
& \begin{array}{l}
t_{n}=a r^{n-1} \\
\frac{14348907}{9}=\frac{9(3)^{n-1}}{9}
\end{array} \\
& 1594323=\frac{3^{n-1}}{n^{n-1}} \quad \frac{\log (1594323)}{\log 3}=\frac{(n-1) \log 3}{\log 3} \\
& 3^{13}=3^{n-1} \quad \frac{\log 1594323}{\log 3}=n-1 \\
& 13=n-1 \\
& n=14 \longrightarrow t_{14}^{+1} \\
& \begin{array}{l}
n=\frac{\log 1594323}{\log 3}+1 \\
n=14 \rightarrow t_{14}
\end{array}
\end{aligned}
$$

A geometric series, is the sum of the terms in a geometric sequence.

$$
S_{n}=a+a r+a r^{2}+a r^{3}+a r^{4}+\ldots \ldots+a r^{n-2}+a r^{n-1}+a r^{n}
$$

There are two ways we can find the sum of a series. One is to write out all the terms and add them together. This can be tedious, especially with complex sequences and long ones. The other way is by using the formulas below:

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \text { or }=\frac{a\left(r^{n}-1\right)}{r-1}
$$

where a is the first term, r is the common ratio, 1 is the last term, and $r \neq 1, \mathrm{n}$ is the number of terms.

$$
S_{n}=\frac{a-l r}{1-r} \quad \ell=\text { last term. }
$$

To understand how this formula is derived, read p. 122 of your text.

Lesson Examples:

1) Find S_{9} of the sequence: $3,6,12, \ldots \ldots$

$$
\begin{array}{ll}
\begin{array}{l}
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
=\frac{3\left(1-2^{9}\right)}{1-2} \\
=\frac{3\left(1-2^{9}\right)}{-1} \\
=-3\left(1-2^{9}\right) \\
=-3(1-512) \\
=-3(-511) \\
=1533
\end{array} & =\frac{3(1-512)}{-1} \\
& =\frac{3(-511)}{-1} \\
& =\frac{-1533}{-1} \\
&
\end{array}
$$

3) a) Find the sum of the following series: $0.025+0.075+\ldots .+54.675$

$$
\begin{aligned}
& S_{n}=\frac{a-l r}{1-r} \\
& =\frac{0.025-54.675(3)}{1-3} \\
& =\frac{0.025-164.025}{-2} \\
& =\frac{-164}{-2}=82 \\
& S_{n}=82
\end{aligned}
$$

b) Determine, algebraically, how many terms are in this series above. 2

$$
\begin{aligned}
& t_{n}=a r^{n-1}=0.025(3)^{n-1} \\
& 54.675=0.025(3)^{n-1} \\
& \frac{54.675}{0.025}=\frac{0.025(3)^{n-1}}{0.025} \\
& \begin{array}{l}
2187=3^{n-1} \\
3^{7}=3^{n-1} \\
7=n-1 \\
n=8
\end{array} \quad t_{8}=8^{\text {th term is the last ore }} \\
& \quad \therefore \text { there are } 8 \text { terms in } \\
& \quad
\end{aligned}
$$

4) Extensive research has shown that when gum is chewed, 10% of the flavor is lost with each chomp. Answer the following questions to the nearest squirt of flavor:

$$
\begin{aligned}
& 100-10=90 \% \text { remains } \\
& r=1-\% \rightarrow r=1-0.1 \geqslant 0.9
\end{aligned}
$$

a) If the first chop gives 40 squirts of flavor, how many squirts will the 10 th chomp give?

$$
\begin{aligned}
& t_{10}=a r^{n-1} \\
& \text { term } 10 \\
& a=40 \quad t_{10}=40(0.9)^{10-1} \\
& r=0.9 \quad t_{10}=40(0.9)^{9} \\
& n=10 \quad \text { You are trying to find the 10th term. } t_{10}=15.50 \longrightarrow
\end{aligned}
$$

b) What is the total amount of flavour that will be received in the first 10 chomps?

sum to term 10

Here the word total means find the sum of all the chomps up to 10 :

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& S_{10}=\frac{40\left(1-0.9^{10}\right)}{1-0.9} \\
& S_{10}=\frac{40\left(1-0.9^{10}\right)}{0.1} \\
& S_{10}=400\left(1-0.9^{10}\right) \\
& S_{10}=260.53 \longrightarrow 260.53 \text { squirts of flared total }
\end{aligned}
$$

5) Determine the nth term, and the sum of the first n terms of the geometric sequence which has 2,6 , and 18 as its first three numbers.

6) a) While training for a race, a runner increases her distance by 4% each day. If she runs 2 km on the first day, what will be distance on the 26th day of training?

$$
\begin{array}{ll}
\begin{array}{ll}
\downarrow \\
t_{26} \text { 26th day of training? } & \\
t_{n}=a r^{n-1} & r=1+0.04 \\
&
\end{array} .
\end{array}
$$

b) What will be the total distance she has ran by the 26th day of training?

$$
\begin{aligned}
S_{26}=\frac{a\left(1-r^{n}\right)}{1-r} \rightarrow & =\frac{2\left(1-1.04^{20}\right)}{1-1.04} \\
& =\frac{2\left(1-1.04^{26}\right)}{-0.04} \int=-50\left(1-1.04^{26}\right)
\end{aligned}
$$

7) A school has a telephone tree to contact people for the upcoming field trip. The first student calls two students, each of whom call two more, each of whom call two more, and so on.
a) How many are contacted at the 8th level of calling?

$$
t_{8}=
$$

$$
\begin{aligned}
& a=1 \\
& r=2
\end{aligned}
$$

b) By the 8th level, how many students, in total, have been contacted?

$$
S_{8}=
$$

Geometric Series: An indicated sum of terms in a geometric sequence.

Example:

Geometric Sequence

VS Geometric Series
3, 6, 12, 24, 48

$$
3+6+12+24+48
$$

Geometric Sequence and Geometric Series

A geometric sequence is a sequence of numbers in which the ratio between consecutive terms is constant.
The formula for the $\mathrm{n}^{\text {th }}$ term of a geometric sequence is

$$
a_{n}=a r^{n-1}
$$

where a is the first term and r is the ratio
A geometric series results from adding the terms of a geometric sequence.
The formula for the sum of a finite geometric series is

$$
S_{n}=\sum_{i=1}^{n} a r^{i-1}=\frac{a\left(1-r^{n}\right)}{1-r}, r \neq 1
$$

where n is the number of terms, a is the first term and r is the ratio

The formula for the sum of an infinite geometric series is

$$
S_{n}=\sum_{i=1}^{\infty} a r^{i-1}=\frac{a}{1-r},|r|<1
$$

where a is the first term and r is the ratio
If $|r| \geq 1$, then the infinite series does not have a sum

Geometric Series

A geometric sequence is a sequence of numbers in which the ratio between consecutive terms is constant. A geometric series results from adding the terms of a geometric sequence.

The formula for the partial sum of the first n terms of a geometric series is

$$
S_{n}=\sum_{i=1}^{n} a r^{i-1}=\frac{a\left(1-r^{n}\right)}{1-r}, r \neq 1
$$

where a is the first term and r is the ratio

The sum of an infinite geometric series is given by

$$
a+a r+a r^{2}+\ldots+a r^{n-1}+\ldots=\sum_{i=1}^{\infty} a r^{i-1}
$$

where a is the first term and r is the ratio
The sum converges to $\frac{a}{1-r}$ if $|\mathrm{r}|<1$
The sum diverges if $|r| \geq 1$

Example \#2: Find the sum of the following series.

$$
7+14+28+\ldots \text { for } 12 \text { terms }
$$

Step \#1: Identify the variables.

$$
\begin{aligned}
& \frac{14}{7}=2 \quad \text { and } \quad \frac{28}{14}=2, \text { so } r=2 . \\
& a=7, r=2, n=12
\end{aligned}
$$

Step \#2: Substitute and evaluate.

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} \\
& S_{n}=\frac{7\left(1-2^{12}\right)}{1-2} \\
& S_{n}=\frac{7(-4095)}{-1} \\
& S_{n}=28665
\end{aligned}
$$

How does the diagram show the result?

. ${ }^{0}$ Sum to infinity of a geometric series
a_{1} is the first term r is the ratio

$$
r=a_{n} \div a_{n-1}
$$

2. Find the value of the infinite geometric

$$
\begin{gathered}
\text { series } 4+2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \\
a_{1}=4, \quad r=\frac{1}{2}
\end{gathered}
$$

2. Find the value of the infinite geometric series

$$
\begin{gathered}
4+2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \\
a_{1}=4, \quad r=\frac{1}{2} \\
S_{\infty}=\frac{a_{1}}{1-r}
\end{gathered}
$$

$$
S_{\infty}=\frac{4}{1-\frac{1}{2}}=\frac{4}{\frac{1}{2}}=8
$$

Determine the sum of the first 9 terms of the geometric series $2+6+18+54+\ldots$

Solution

Think ...

To use the method, we need to know the 9th term.

Determine t_{9} using $t_{n}=a r^{n-1}$.
In this series, $a=2, r=3$, and $n=9$

$$
\begin{aligned}
t_{9} & =2 \times 3^{8} \\
& =13122
\end{aligned}
$$

Let S represent the sum:

$$
\begin{aligned}
S & =2+6+18+\ldots+13122 \\
3 S & =6+18+\ldots+13122+39366 \\
\hline 2 S & =-2 \\
& =39364 \\
S & =19682
\end{aligned}
$$

Multiply by the common ratio $3: \quad 3 S=6+18+\ldots+13122+39366$
Subtract (1) from (2):

The sum of the first 9 terms of the series is 19682 .

Determine the sum of the first 10 terms of each geometric series.
a) $4+12+36+108+\ldots$
b) $6+3+1.5+0.75+\ldots$

Solution

Use the formula $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$.
a) Substitute $a=4, r=3, n=10$.
b) Substitute $a=6, r=0.5, n=10$.

$$
\begin{aligned}
S_{10} & =\frac{4\left(3^{10}-1\right)}{3-1} \\
& =2\left(3^{10}-1\right) \\
& =118096
\end{aligned}
$$

$$
\begin{aligned}
S_{10} & =\frac{6\left(0.5^{10}-1\right)}{0.5-1} \\
& =-12\left(0.5^{10}-1\right) \\
& =11.98828125
\end{aligned}
$$

Consider the infinite geometric series $4-\frac{4}{5}+\frac{4}{25}-\ldots$.
a) Explain why the series has a sum to infinity.
b) Determine the sum to infinity.

Solution

a) For this series, $a=4$ and $r=-\frac{1}{5}$

$$
\begin{aligned}
S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1} \\
& =\frac{4\left(\left(-\frac{1}{5}\right)^{n}-1\right)}{-\frac{1}{5}-1} \times \frac{-1}{-1} \\
& =\frac{4\left(1-\left(-\frac{1}{5}\right)^{n}\right)}{\frac{6}{5}} \\
& =\frac{10}{3}\left(1-\left(-\frac{1}{5}\right)^{n}\right)
\end{aligned}
$$

The series has a sum to infinity because the expression $\left(-\frac{1}{5}\right)^{n}$
gets closer to 0 as n gets larger.
b) The sum to infinity is $\frac{10}{3}$.

Which infinite geometric series has a sum? What is the sum?
a) $4-6+9-13.5+\ldots$
b) $6+2+\frac{2}{3}+\frac{2}{9}+\ldots$

Solution

a) $4-6+9-13.5+\ldots$

For this series, $r=-1.5$; since $|r|>1$, the series has no sum.
b) $6+2+\frac{2}{3}+\frac{2}{9}+\ldots$

For this series, $r=\frac{1}{3}$; since $|r|<1$, the series has a sum. Use the formula.

$$
\begin{aligned}
S & =\frac{a}{1-r} \\
& =\frac{6}{1-\frac{1}{3}} \\
& =\frac{6}{\frac{2}{3}} \\
& =9
\end{aligned}
$$

The sum of the series is 9 .

Your Turn

Determine the sum of the following geometric series.
a) $\frac{1}{64}+\frac{1}{16}+\frac{1}{4}+\cdots+1024$
b) $-2+4-8+\cdots-8192$

Your Turn

Determine whether each infinite geometric series converges or diverges.
Calculate the sum, if it exists.
a) $1+\frac{1}{5}+\frac{1}{25}+\cdots$
b) $4+8+16+\cdots$

Apply the Sum of an Infinite Geometric Series

Assume that each shaded square represents $\frac{1}{4}$ of the area of the larger square bordering two of its adjacent sides and that the shading continues indefinitely in the indicated manner.
a) Write the series of terms that would represent this situation.
b) How much of the total area of the largest square is shaded?

Solution

Your Turn

You can express $0 . \overline{584}$ as an infinite geometric series.
$0.584=0.584584584 \ldots$

$$
=0.584+0.000584+0.000000584+\cdots
$$

Determine the sum of the series.

