Thursday, Jan. 25th

Plan For Today

1. Go over Test 1. Any questions?
2. Any questions about material from last class? (Translations \& Reflections)

- Do 2.4 Translations \& Reflections Check-in Quiz

3. Finish working through transformations in Chapter 2
\checkmark 2.0 Graphing Review
\checkmark 2.4 Horizontal and Vertical Translations
\checkmark 2.4 Reflections

* 2.4 stretches
* 2.5 Inverse of a Relation
* 2.6 Combining Transformations

$$
f(x)=a f(b(x-c))+d
$$

4. Work on practice questions in workbook and practice questions handout.
5. Work on Ch Transformations Desmos project.

Project for Chapter 2 is online. Please join my PC12 Jan-Apr2024 Class in Desmos at the link I emailed you with your FULL NANE before starting the assignment. Here's a quick link to join the class in Desmos:
http://tinyurl.com/PC12-Desmos-2024
Here is a quick link to the first assignment:
http://tinyurl.com/Jan24-Transformations

Plan Going Forwards

1. Work on practice questions from 2.4-2.6 in the workbook. Work on the Desmos project online.

* GHZ TEST ON THURSDAY, FEB. IT
* GHZ ONLINE DESMOS PROJECT DUE THURSDAY. FEB. IT

2. We will do some general review from $\mathrm{Ch1}$ and Ch 2 on Tuesday after the Ch 2 test to prepare for the Unit 1 Exam.

UnIT 1 EXAM On CH182 On THURSDAY, fEB. 1SU

- 10 Multiple Choice \& 20 marks on the Written
- ~1 hour - please prepare so you are not "learning" while doing the test
- Closed-book - no notes
- Rewrite is following Tuesday after class at 12:30pm
- Ill email you when I post marks by Friday or Saturday

3. We will do a short intro to Chapter 3 Polynomials on Tuesday as well and continue with it next Thursday after the Unit 1 Exam.

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at anurita.weebly.com after class.
Anurita Dhiman = adhiman@sd35.bc.ca
2.4 Review Translations \& Reflections. \& SKip p. 75

$$
p .71-74
$$

p. 73 Ex: 4 Base Function

Note:
$=$ square root function $y=\sqrt{x}$

$$
y=f(x)
$$

$$
\text { or } f(x)=\sqrt{x}
$$

(they are the same)

Ex 2 4 right, 3dcan.

$$
+4 \underbrace{-3} y=f(x-4)-3
$$

Ex $y=f(x) \longrightarrow y=f(x-2)+4$

$$
2 \text { right up } 4 .
$$

Ex 4 Recall: table qualues are the points an the graph:- translation are applied to the points
= mapping notation.
base: \longrightarrow transformed p. 73

$$
\mathbb{E x}: 4 \underbrace{(2,2) \text { an } y=f(x)}_{\begin{array}{c}
\text { Base } \\
\text { Function }
\end{array}} \rightarrow \underbrace{\left(y=f(x+3)-2^{2}\right.}_{\begin{array}{c}
\text { transformed } \\
\text { function. }
\end{array}} \text { dour }
$$

$$
(2,2) \xrightarrow[(2-3,2-2)]{(-1,0)}
$$

Reflections p. 74

Base Function \longrightarrow Reflections

$$
\begin{aligned}
y=f(x) \longrightarrow \begin{array}{l}
y=-f(x) \Rightarrow \\
(x,-y)
\end{array} \begin{array}{c}
\text { reflection } \\
\text { over } x-a x i s \\
\text { b/c multiply } \\
y \text {-coordinate }
\end{array} \\
\text { by -1 }
\end{aligned}
$$

Ex 5: $y=x^{2}+x \quad$ a) reflect in x-axis.
b) reflection in y-axis.

$$
u=f(-x) \text { * replace } x \rightarrow u=x^{2}+x
$$

$$
\begin{aligned}
& \text { R }-y=f(x) \text { replace } y \text { with } y=-x^{2}-x \\
& -y=\frac{x^{2}+x}{-1} \\
& y=-x^{2}-x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Translations } \rightarrow y=f(x-h)+k \text {. } \\
& h=\begin{array}{c}
\text { right } \\
\text { orleft }
\end{array} \quad k=\text { up }_{\text {dam }}
\end{aligned}
$$

b) reflection in y-axis

$$
\begin{aligned}
y=f(-x) \text { * replace } x \\
\text { with }-x
\end{aligned} \rightarrow y=x^{2}+x ~ 子 \begin{aligned}
& \downarrow \\
& y=(-x)^{2}+(-x) \\
& y=x^{2}-x
\end{aligned}
$$

Ex:6 $\begin{aligned} y=x^{2}+2 x \quad \text { to } \begin{aligned} & y= \\ & \downarrow \\ & \text { since }\left(x^{2}+2 x\right) \\ & \text { inf front } t\end{aligned}\end{aligned}$

$$
\text { function as } y=-f(x)
$$

$$
=\text { reflection over } / \text { in }
$$

$$
x \text {-axis }
$$

extra: Base

$$
\begin{aligned}
& \text { Base } \\
& \begin{aligned}
& y=\frac{1}{2}(x+1)^{3}+3 \rightarrow \\
& \text { reflection in } x-a x i s \\
& \text { not } y
\end{aligned}=-\frac{1}{2}(x+1)^{3}+3 \\
& \text { corRECT: } y=-\left[\frac{1}{2}(x+1)^{3}+3\right] \\
& y=-\frac{1}{2}(x+1)^{3}-3
\end{aligned}
$$

$$
\rightarrow \text { reflection in } y \text {-axis }
$$

$$
y=\frac{1}{2} \underbrace{(-x+1)^{3}}_{\text {fatso. }}+3
$$

$$
y=\frac{1}{2}(-(x-1))^{3}+3
$$

ExT (3,2) is on $y=f(x)$ (Base)
a) $y=-f(x)$
b) $y=f(-x)$
c) $\begin{gathered}y=-f(-x) \\ (-3,-2)\end{gathered}$
$(3,-2)$
$(-3,2)$

$$
\# 1,2,9,10
$$

2.4 Stretches

\longrightarrow compressions + expansions
Base function Transformed Function

$$
\begin{aligned}
& \text { verictac } \\
& \text { sta ch a factor } \\
& \text { by a factor }
\end{aligned}
$$

$$
\begin{gathered}
\text { by a a fac } \\
a^{\prime \prime} a^{\prime \prime}
\end{gathered}
$$

$$
\begin{aligned}
& \text { mit } \\
& =\text { my } a y=(x, a y)
\end{aligned}
$$

$$
\text { by } a=(x, a y)
$$

$$
\begin{aligned}
& b= \text { horizontal } \\
& \text { str, th al ha } \\
& \text { asountard } \\
& \text { " } \frac{1}{b} \\
&= \text { multiply } \\
& x-c o d . b y \\
& \frac{c o s}{b}=\left(\frac{1}{b} x, y\right) \\
& R\left(\frac{x}{b}, y\right)
\end{aligned}
$$

Mapping
$\rightarrow\left(\frac{1}{b} x, a y\right)$
P. TEX 8 Base function $y=\sqrt{x}$
(x, y)

$$
\begin{aligned}
& \text { a) vert exp.by } 2 \\
& \text { (VEda) } \\
& y=2 \sqrt{x} \\
& \text { b) } \begin{array}{l}
\text { bert. } \\
\text { venviessin } \\
\text { by } \\
1
\end{array} \\
& \text { ariz. } \\
& \rightarrow \text { d) } \\
& \text { (vc }{ }^{\frac{1}{2}} d^{\frac{1}{2}} \\
& \begin{array}{ll}
\text { by } & \hbar x^{2} \\
\text { by } \\
(H E d 2) & \left(H C d \frac{1}{2}\right)
\end{array} \\
& \begin{aligned}
y=\frac{1}{2} \sqrt{x} \quad & y=\sqrt{\frac{1}{2} x} \quad y=\sqrt{2 x} \\
& * \text { reciprocal }
\end{aligned} \\
& \text { replace } \quad \text { replace } x
\end{aligned}
$$

$$
\begin{aligned}
& y \text {-ova } \\
& \text { J } \mathrm{Va}^{--} \\
& \text {* reciprocal } \\
& \text { * reciprocal } \\
& \text { replace } \\
& x \text { with } \frac{1}{2} x \\
& \text { q } \frac{1}{2} \text { is } 2 \\
& \text { replace } x \\
& \text { with } 2 x \\
& \text { Ex:9 } y=f(x) \longrightarrow y=3 f\left(\frac{1}{4} x\right) \\
& \begin{array}{l}
\text { Describe } \\
\text { Transformations: VE } 3
\end{array} \\
& \pm \frac{1}{4} \xrightarrow{\text { recporacal }} \frac{4}{1}=4 \\
& \text { HE } / 4 \\
& \text { Exit }(3,1) \text { on } y=f(x) \rightarrow y=2(4 x) \\
& \text { *recall: }(x, y) \longrightarrow\left(\frac{1}{b} x, a y\right) \text { VEq2 } \text { sC }^{\frac{1}{4}} \\
& \left.(3,1) \longrightarrow 3\left(\frac{1}{4}\right)\right)\left(\frac{3}{4}, 2\right)
\end{aligned}
$$

Invariant Points: points which stay the same p. 78 after a transformation.
: when $y=f(x) \longrightarrow y=a f(x)$

$$
(x, a y)
$$

\therefore when $y=0$ on the x-axis, the points are invariant
\therefore when $y=f(x) \longrightarrow y=f(b x)$

$$
\left(\frac{1}{b} x, y\right)
$$

\therefore when $x=0$ on the y-axis, the points are invariant

IF $y=a f(b x) \rightarrow$ only invariant point an y invariant $(0,0)$ (where both $x+y$
are zero)
Practice \#3-8 sep \#11-17

$$
\nRightarrow 18,19
$$

Try 2.6 Combining \#1, $2 a, b, c, e, g, h, 6,7$
2.6 Combining
\rightarrow order fer transformations.
Base

$$
\begin{aligned}
& (x, y) \longrightarrow\left(\frac{1}{b} x+h, a y+k\right) \\
& \text { ORDER }\left\{\begin{array}{l}
\text { (1) stretch reflections } \\
\text { (2) translations }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& 2.4 \text { Practice } \quad y=f(x) \\
& \# 18 c) \\
& y=-f\left(\frac{x}{2}\right) \\
& \begin{array}{l}
\text { ref } \\
x=-f\left(\frac{1}{2} x\right) \\
x=\operatorname{axis}
\end{array} \quad H E d 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Base } \\
& y=f(x) \\
& \begin{array}{l|ll|l}
x & y & 2 x & -4 \\
\hline-3 & 2 & x^{2} & -6 \\
-1 & 0 & x-1 & -2 \\
0 & 0 \\
0 & 1 & 0 & -1 \\
2 & 0 & 4 & 0
\end{array}
\end{aligned}
$$

$$
(2 x,-y)
$$

$$
\begin{aligned}
& y=-4 f(-3 x+6)+1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { ref.in } \begin{array}{c}
\text { ef. in } \\
\text { e-axis. } \\
y \text {-axis }
\end{array}
\end{array} \\
& \text { (2) Tromslations } \\
& \left.(3,2) \longrightarrow \begin{array}{c}
\left(-\frac{1}{3}(3),-4(2)\right) \\
(-1,-8)
\end{array}\right)=\left(\begin{array}{l}
(1+2,-8+1) \\
(1,-7)
\end{array}\right.
\end{aligned}
$$

2.4 Compressions/Expansions

Vertical and Horizontal Stretches

stretch

- a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor
- scale factors between 0 and 1 result in the point moving closer to the line of reflection; scale factors greater than 1 result in the point moving farther away from the line of reflection

A stretch, unlike a translation or a reflection, changes the shape of the graph. However, like translations, stretches do not change the orientation of the graph.

- When the output of a function $y=f(x)$ is multiplied by a non-zero constant a, the result, $y=a f(x)$ or $\frac{y}{a}=f(x)$, is a vertical stretch of the graph about the x-axis by a factor of $|a|$. If $a<0$, then the graph is also reflected in the x-axis.
- When the input of a function $y=f(x)$ is multiplied by a non-zero constant b, the result, $y=f(b x)$, is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If $b<0$, then the graph is also reflected in the y-axis.

$$
y=f(x) \longrightarrow y=a f(b x)
$$

Transformation Rules for Functions

Horizontally Compressed

Example 1

The values and graph of the function $f(x)$ are shown in blue. Make a table and a graph of the function $g(x)=f(3 x)$.

Solution

\boldsymbol{x}	$f(x)$	\boldsymbol{x}	$g(x)$
-6	36	-2	36
-3	9	-1	9
-1	1	$-1 / 3$	1
0	0	0	0
1	1	$1 / 3$	1
3	9	1	9
6	36	2	36

Vertical Stretches $\quad y-k=a f(x-h)$

In general, for any function $y=f(x)$, the graph of the function $y=a f(x)$ has been vertically stretched about the x-axis by a factor of $|a|$.

The point $(x, y) \rightarrow(x, a y)$. Only the y coordinates are affected.
Invariant points are on the line of stretch, the x-axis. are the x -intercepts.

When $|a|>1$, the points on the graph move farther away from the x-axis. $y=3 f(x)$ Vertical stretch by a factor of 3

When $|a|<1$, the points on the graph move closer to the x-axis. $\quad y=\frac{1}{3} f(x)$ Vertical stretch by a factor of $1 / 3$

Example 1

The values and graph of the function $f(x)$ are shown in blue. Make a table and a graph of the function $g(x)=f(1 / 2 x)$.
Solution

\boldsymbol{x}	$f(x)$	\boldsymbol{x}	$g(x)$
-3	0	-6	0
-2	2	-4	2
-1	0	-2	0
0	-1	0	-1
1	0	2	0
2	-1	4	-1
3	1	6	1

$y=2 f(x) \quad$ Vertical Stretching $y=a f(x),|a|>1$ about the x-axis by a factor of 2 .
Key Points

(x, y)	\rightarrow	$(x, 2 y)$
$(-2,0)$	\rightarrow	$(-2,0)$
$(-1,-7)$	\rightarrow	$(-1,-14)$
$(1 / 2,1)$	\rightarrow	$(1 / 2,2)$

Invariant Points
$(-2,0)$
$(0,0)$
$(1,0)$
$(2,0)$

A vertical stretch $\quad y=f(x)$

Key Ideas

- Any point on a line of reflection is an invariant point.

Function	Transformation from $y=f(x)$	Mapping	Example	
$y=-f(x)$	A reflection in the x-axis	$(x, y) \rightarrow(x,-y)$		
$y=f(-x)$	A reflection in the y-axis	$(x, y) \rightarrow(-x, y)$		
$y=a f(x)$	A vertical stretch about the x-axis by a factor of \|a	; if $a<0$, then the graph is also reflected in the x-axis	$(x, y) \rightarrow(x, a y)$	
$y=f(b x)$	A horizontal stretch about the y-axis by a factor of $\frac{1}{\|b\|^{\prime}}$; if $b<0$, then the graph is also reflected in the y-axis	$(x, y) \rightarrow\left(\frac{x}{b^{\prime}}, y\right)$		

Transformations of Graphs

Using your knowledge of transformations of graphs match up the transformations of the function with the graph. The first one is done for you.

2.6 Combining Transformations

Transformation Rules for Functions		
Function Notation	Type of Transformation	Change to Coordinate Point
$f(\mathrm{x})+\mathrm{d}$	Vertical translation up d units	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}, \mathrm{y}+\mathrm{d})$
$f(\mathrm{x})-\mathrm{d}$	Vertical translation down d units	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}, \mathrm{y}-\mathrm{d})$
$f(x+c)$	Horizontal translation left c units	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}-\mathrm{c}, \mathrm{y})$
$f(x-c)$	Horizontal translation right c units	$(x, y) \rightarrow(x+c, y)$
$-f(x)$	Reflection over x -axis	$(x, y) \rightarrow(x,-y)$
$f(-x)$	Reflection over y -axis	$(x, y) \rightarrow(-x, y)$
$\mathrm{af}(\mathrm{x})$	Vertical stretch for $\|a\|>1$	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}, \mathrm{ay})$
	Vertical compression for $0<\|a\|<1$	
$f(b x)$	Horizontal compression for $\|\mathrm{b}\|>1$	$(x, y) \rightarrow\left(\frac{x}{b}, y\right)$
	Horizontal stretch for $0<\mid$ b\| <1	

Summary: standard form, mapping notation and order of performing transformations

Summary of Transformations

Graph	Draw the graph of $f(x)$ and:	Changes in $f(x)$
Vertical shift $\begin{aligned} & y=f(x)+c \\ & y=f(x)-c \end{aligned}$	Raise the graph of $f(x)$ by c units -add c to y coordinate Lower the graph of $f(x)$ by c units -subtract c from y coordinate	
Horizontal shift $\begin{aligned} & y=f(x+c) \\ & y=f(x-c) \end{aligned}$	Shift the graph $\mathrm{f}(\mathrm{x})$ to the left c units -subtract c from x coordinate Shift the graph $f(x)$ to the right c units -add c to \times coordinate	
Reflection about the x-axis $y=-f(x)$	Reflect the graph of $f(x)$ about the x-axis -multiply each y coordinate by -1	
Reflection about the y-axis $y=f(-x)$	Reflect the graph of $f(x)$ about the y-axis -multiply each x coordinate by -1	\int_{-4}^{5}
Vertical stretching and compression $\begin{gathered} y=c f(x), c>1 \\ y=c f(x), 0<c<1 \end{gathered}$	Vertically stretching the graph of $\mathrm{f}(\mathrm{x})(c>1)$ Vertically compressing the graph of $f(x)(0<c<1)$ -multiply each y coordinate by c	
Horizontal stretching and compression $\begin{gathered} y=f(c x), c>1 \\ y=f(c x), 0<c<1 \end{gathered}$	Horizontally compressing the graph of $f(x)(c>1)$ Horizontally stretching the graph of $\mathrm{f}(\mathrm{x})(0<c<1)$ -divide each x coordinate by c	
$y=\frac{1}{f(x)}$	Take the reciprocal of each y coordinate of $f(x)$	
Order of operations for transformations: 1) horizontal shifts 2) stretches/compressions 3) reflections 4) vertical shifts		

Functions \& Graph Transformations

What is a Function?

A function describes a relation between two (or more) values. Each input value has one output.

For example: let $f(x)=x^{3}+x^{2}-3 x$

$$
f(2)=2^{3}+2^{2}-3 \times 2=6, \quad f(0)=0^{3}+0^{2}-3 \times 0=0
$$

Function f
utput $f(x)$

A function is usually called f but can, like a variable, be called any letter or symbol.

Graphing a Function

A function is graphed the same as the " $y=\ldots$. " equations you're used to, we just use " $f(x)=\ldots$ " instead!

Transformations

Transformations cause functions to change in some way. Constants are used to either translate or stretch a function's graph.
Translate: a shift, the graph moves:

| up \& down
 $f(x)+a$ | or \quad left \& right |
| :---: | :---: | :---: |
| $f(x+b)$ | |

Stretch: (or squeeze) parallel to:

y axis	or	x axis
$c f(x)$		$f(d x)$

Top tip

If the constant is inside the function, in with the x, then it causes transformations in the direction of the x axis.

If it is outside the function, operating on $f(x)$, then it causes changes in the direction
of the y axis.

These bottom two graphs only use positive constants. Exercise: can you sketch what they'd look like with negative constants?

Use the graph of $f(x)$ to sketch a graph of $k(x)=f\left(\frac{1}{2} x+1\right)-3 \rightarrow f(x)=f\left(\frac{1}{2}(x+2)\right)-3$

(1) HE qQ
(2) 2 left, 3 dam

