Plan For Today:

- 1. Go over Test 1. Any questions?
- 2. Any questions about material from last class? (Translations & Reflections)
 - Do 2.4 Translations & Reflections Check-in Quiz
- 3. Finish working through transformations in Chapter 2
 - ✓ 2.0 Graphing Review
 - 2.4 Horizontal and Vertical Translations
 - ✓ 2.4 Reflections
 - * 2.4 Stretches
 - * 2.5 Inverse of a Relation
 * 2.6 Combining Transformations

f(x) = af(b(x - c)) + d

- 4. Work on practice questions in workbook and practice questions handout.
- 5. Work on Ch2 Transformations Desmos project.

Project for Chapter 2 is **online**. Please join my PC12 Jan-Apr2O24 Class in Desmos at the link I emailed you with your **FULL NAME** before starting the assignment. Here's a quick link to join the class in Desmos: <u>http://tinyurl.com/PC12-Desmos-2O24</u> Here is a quick link to the first assignment: <u>http://tinyurl.com/Jan24-Transformations</u>

Plan Going Forward:

1. Work on practice questions from 2.4-2.6 in the workbook. Work on the Desmos project online.

- * CH2 TEST ON THURSDAY, FEB. 1ST
- * CH2 ONLINE DESMOS PROJECT DUE THURSDAY, FEB. 1ST

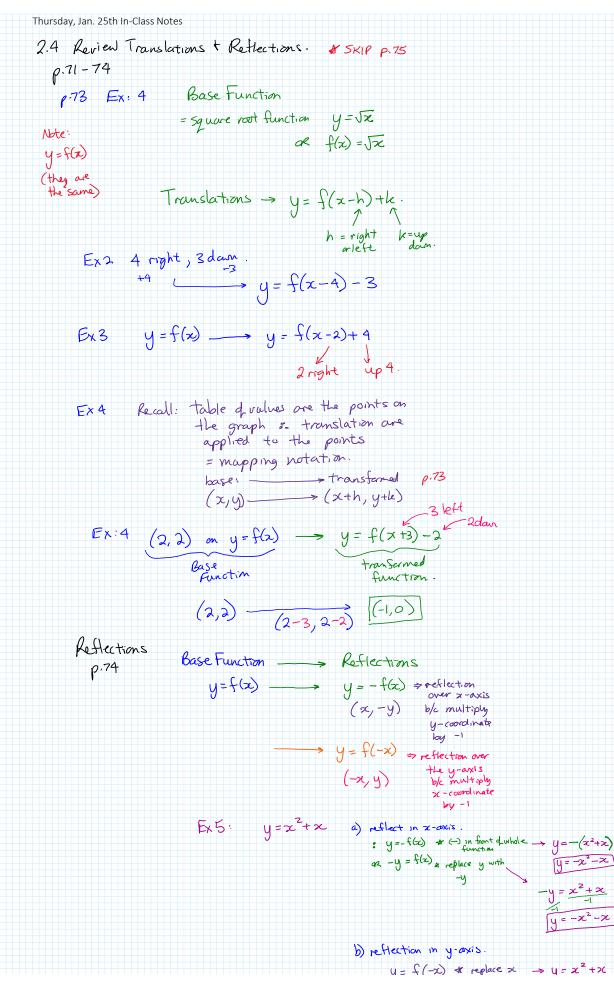
2. We will do some general review from Ch1 and Ch2 on Tuesday after the Ch2 test to prepare for the Unit 1 Exam.

- 10 Multiple Choice & 20 marks on the Written
- ~1 hour please prepare so you are not "learning" while doing the test
- Closed-book no notes
- Rewrite is following Tuesday after class at 12:30pm
- I'll email you when I post marks by Friday or Saturday

3. We will do a short intro to Chapter 3 Polynomials on Tuesday as well and continue with it next Thursday after the Unit 1 Exam.

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at <u>anurita.weebly.com</u> after class.

Anurita Dhiman = adhiman@sd35.bc.ca



b) reflection in y-oxis.

$$y = f(-x) * replace x \Rightarrow y = x^{2} + x$$

$$y = (x)^{2} + (x)$$

$$y = (x)^{2} + (x)$$

$$y = x^{2} + 2x \quad to \quad y = = (x^{2} + 2x)$$

$$s_{skce}(c) \text{ in front } d$$

$$f_{unction as } y = -f(x)$$

$$= reflection over / in$$

$$x = axis$$
outra: base
$$y = \frac{1}{2}(x + i)^{3} + 3 \implies reflection in x = axis$$
Nor $y = -\frac{1}{2}(x + i)^{3} + 3$

$$QRRECT: \quad y = -\frac{1}{2}(x + i)^{3} + 3$$

$$y = \frac{1}{2}(-x + i)^{3} + 3$$

$$(3, 2) \quad is \quad on \quad y = f(x)$$

$$y = f(-x)$$

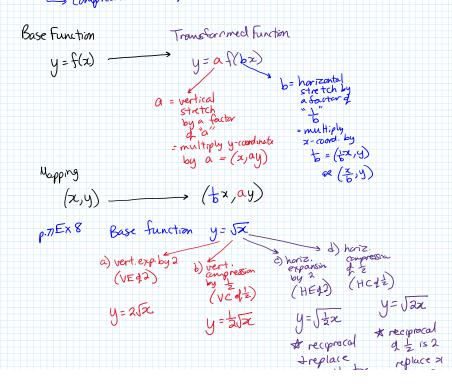
$$(3, -2)$$

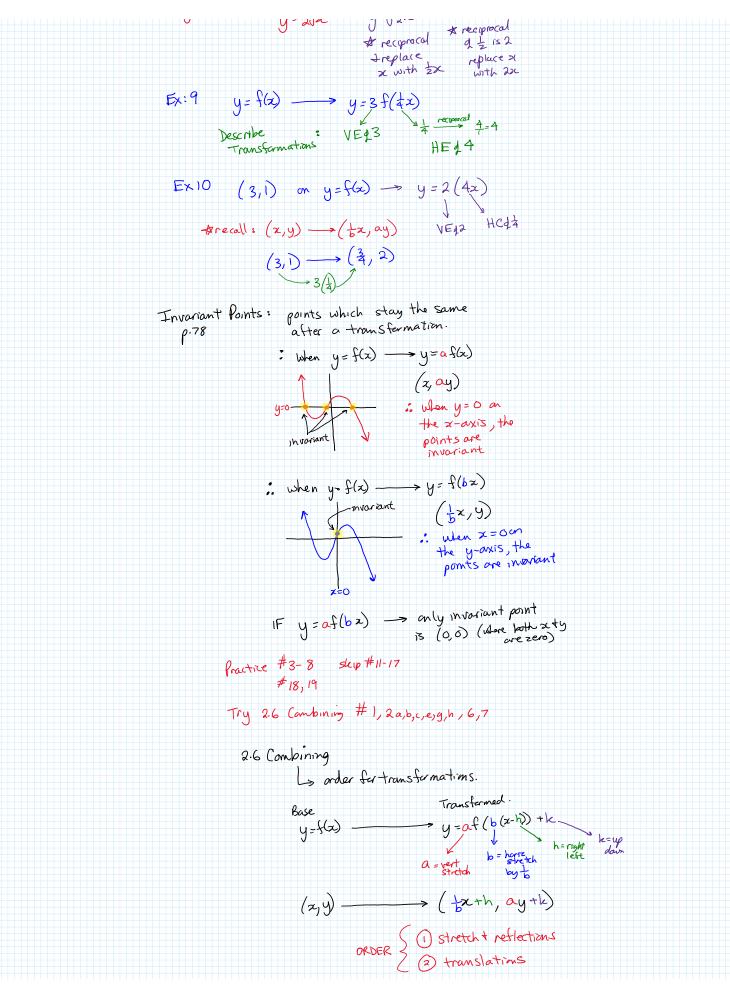
$$(-3, -2)$$

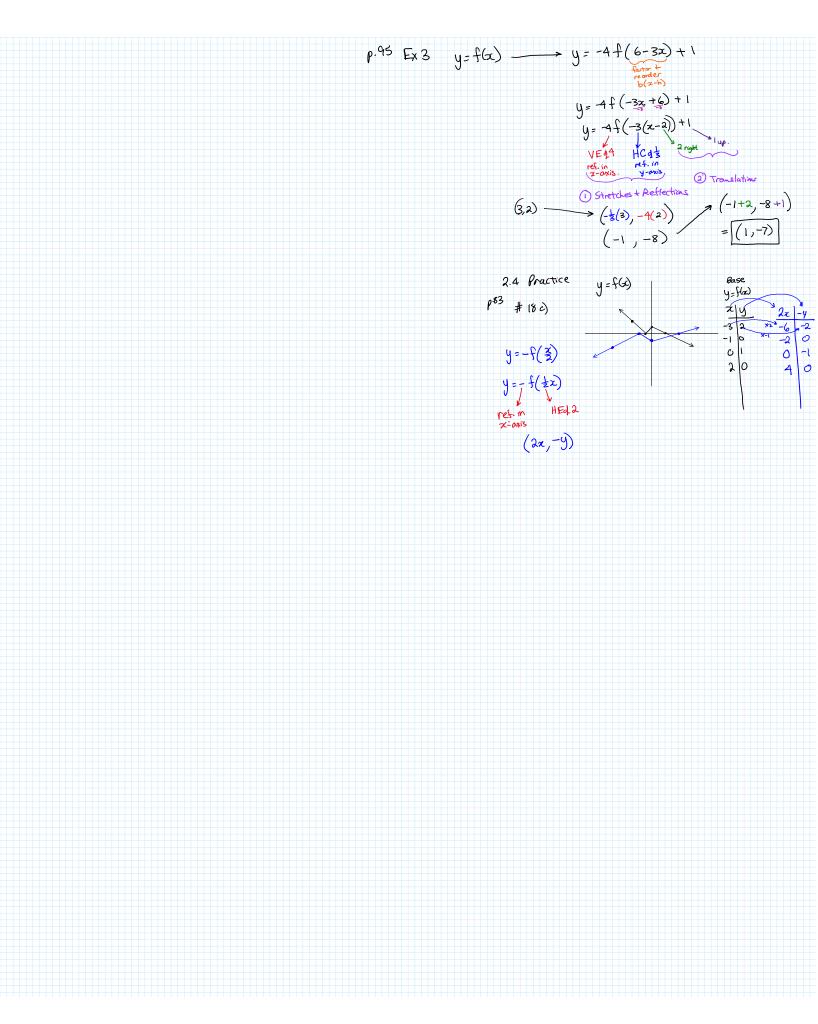
$$(-3, -2)$$

$$(-3, -2)$$

2.4 Stretches. La compressions + expansions







2.4 Compressions/Expansions

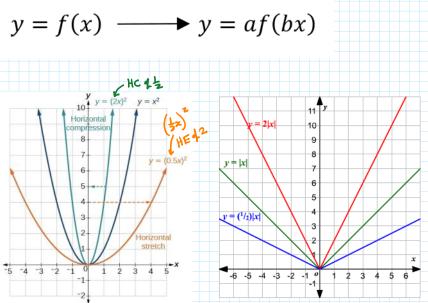
stretch

- a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor
- scale factors between 0 and 1 result in the point moving closer to the line of reflection; scale factors greater than 1 result in the point moving farther away from the line of reflection

Vertical and Horizontal Stretches

A **stretch**, unlike a translation or a reflection, changes the shape of the graph. However, like translations, stretches do not change the orientation of the graph.

- When the output of a function y = f(x) is multiplied by a non-zero constant *a*, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the *x*-axis by a factor of |a|. If a < 0, then the graph is also reflected in the *x*-axis.
- When the input of a function y = f(x) is multiplied by a non-zero constant *b*, the result, y = f(bx), is a horizontal stretch of the graph about the *y*-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the *y*-axis.



Transformation Rules for Functions				
Function Notation	Type of Transformation	Change to Coordinate Point		
f(x) + <mark>d</mark>	Vertical translation up d units	$(x, y) \rightarrow (x, y + d)$		
f(x) – <mark>d</mark>	Vertical translation down d units	$(x, y) \rightarrow (x, y - d)$		
f(x + c)	Horizontal translation left c units	$(x, y) \rightarrow (x - c, y)$		
f(x <mark>- c</mark>)	Horizontal translation right c units	$(x, y) \rightarrow (x + c, y)$		
-f(x)	Reflection over x-axis	$(x, y) \rightarrow (x, -y)$		
f(-x) Reflection over <mark>y-axis</mark>		$(x, y) \rightarrow (-x, y)$		
af(x)	Vertical stretch for a >1	$(x, y) \rightarrow (x, ay)$		
	Vertical compression for 0 < a < 1			
f(bx)	Horizontal compression for b > 1	$(x, y) \rightarrow \left(\frac{x}{b}, y\right)$		
	Horizontal stretch for 0 < b < 1	(b, y)		

Horizontally Compressed

Example 1

The values and graph of the function f(x) are shown in blue. Make a table and a graph of the function g(x) = f(3x).

Solution

x	<i>f(x)</i>	x	g(x)	
-6	36	-2	36]
-3	9	-1	9	1 \ \ \ / /
-1	1	-1/3	1	(thu / thu
0	0	0	0]
1	1	1/3	1	
3	9	1	9	1
6	36	2	36	1

Vertical Stretches y-k = af(x-h)

In general, for any function y = f(x), the graph of the function y = a f(x) has been vertically stretched about the x-axis by a factor of |a|.

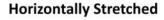
The point $(x, y) \rightarrow (x, ay)$. Only the y coordinates are affected.

Invariant points are on the line of stretch, the x-axis. are the x-intercepts.

When |a| > 1, the points on the graph move farther away from the x-axis. y = 3f(x) Vertical stretch by a factor of 3

When |a| < 1, the points on the graph move closer to the x-axis.

 $y = \frac{1}{3} f(x)$ Vertical stretch by a factor of %

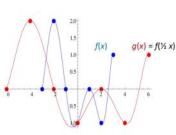


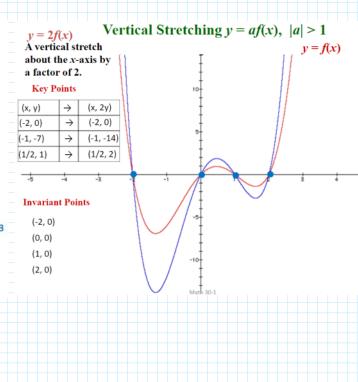
Example 1

The values and graph of the function f(x) are shown in blue. Make a table and a graph of the function $g(x) = f(\frac{1}{2}x)$.

Solution

x	<i>f(x)</i>	x	g(x)
-3	0	-6	0
-2	2	-4	2
-1	0	-2	0
0	-1	0	-1
1	0	2	0
2	-1	4	-1
3	1	6	1





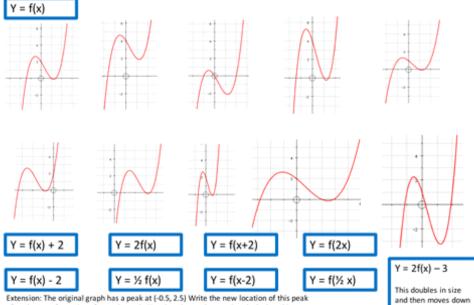
Key Ideas

• Any point on a line of reflection is an invariant point.

Function	Transformation from $y = f(x)$	Mapping	Example
y = -f(x)	A reflection in the <i>x</i> -axis	$(x, y) \rightarrow (x, -y)$	y = f(x)
y = f(-x)	A reflection in the y-axis	$(x, y) \rightarrow (-x, y)$	y = f(x)
y = af(x)	A vertical stretch about the <i>x</i> -axis by a factor of $ a $; if $a < 0$, then the graph is also reflected in the <i>x</i> -axis	(x, y) → (x, ay)	y = af(x), a > 1
y = f(bx)	A horizontal stretch about the y-axis by a factor of $\frac{1}{ b }$; if $b < 0$, then the graph is also reflected in the y-axis	$(x, y) \rightarrow \left(\frac{x}{b}, y\right)$	y = f(x) $y = f(bx), b > 0$ x

Transformations of Graphs

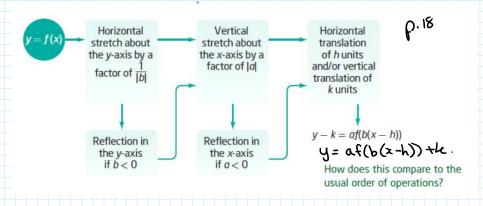
Using your knowledge of transformations of graphs match up the transformations of the function with the graph. The first one is done for you.



3

Extension: The original graph has a peak at (-0.5, 2.5) Write the new location of this peak after the transformations for each graph. How has the peak moved and why has this happened?

2.6 Combining Transformations



Transformation Rules for Functions			
Function Notation	Type of Transformation	Change to Coordinate Point	
f(x) + d	Vertical translation up d units	$(x, y) \rightarrow (x, y + d)$	
f(x) – d Vertical translation down d units		$(x, y) \rightarrow (x, y - d)$	
f(x + c) Horizontal translation left c units		$(x, y) \rightarrow (x - c, y)$	
f(x – c)	Horizontal translation right c units	(x, y) → (x <mark>+ c</mark> , y)	
-f(x)	Reflection over x-axis	$(x, y) \rightarrow (x, -y)$	
f(-x)	Reflection over y-axis	$(x, y) \rightarrow (-x, y)$	
- 5()	Vertical stretch for a >1	(x, y) → (x, <mark>a</mark> y)	
af(x)	Vertical compression for 0 < a < 1		
(hu)	Horizontal compression for b > 1	$(x, y) \rightarrow \left(\frac{x}{b}, y\right)$	
f(bx)	Horizontal stretch for 0 < b < 1		

Summary: standard form, mapping notation and order of performing transformations

Summary of Transformations

Graph	Draw the graph of f(x) and:	Changes in f(x)
Vertical shift y = f(x) + c y = f(x) - c	Raise the graph of f(x) by c units -add c to y coordinate Lower the graph of f(x) by c units -subtract c from y coordinate	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Horizontal shift y = f(x + c) y = f(x - c)	Shift the graph f(x) to the left c units -subtract c from x coordinate Shift the graph f(x) to the right c units -add c to x coordinate	$-10 \qquad 0 \qquad 10 \qquad -10 \qquad (x+3)^2 \qquad (x-3)^2$
Reflection about the x-axis y = -f(x)	Reflect the graph of f(x) about the x-axis -multiply each y coordinate by -1	-4 -2 0 2 4 $-x^2$
Reflection about the y-axis y = f(-x)	Reflect the graph of f(x) about the y-axis -multiply each x coordinate by -1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Vertical stretching and compression y = cf(x), c > 1 $y = cf(x), 0 < c < 1$	Vertically stretching the graph of f(x) (c > 1) Vertically compressing the graph of f(x) (0 < c < 1) -multiply each y coordinate by c	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Horizontal stretching and compression y = f(cx), c > 1 $y = f(cx), 0 < c < 1$	Horizontally compressing the graph of f(x) (c > 1) Horizontally stretching the graph of f(x) (0 < c < 1) -divide each x coordinate by c	$ \begin{array}{c} 10 \\ 5 \\ -5 \\ $
$y = \frac{1}{f(x)}$ Order of operations fo 4) vertical shifts	Take the reciprocal of each y coordinate of f(x) r transformations: 1) horizontal shifts 2)	stretches/compressions 3) reflections

March 2017

MVCC Learning Commons Math Lab

Functions & Graph Transformations

