Plan For Todays

1. Questions from Chapter 2 or the Ch2 Project?

档 Do Chapter 2 Test
率 Note: Chapter 2 Project Due TODAY - please complete by tonight at the latest.
2. Any review from Chi?

Polynomial Function: Expanded Form
3. Start Chapter 3: Polynomial Functions

* 3.18 Characteristics of Polynomial Functions
* 3.2: Equations \& Graphs of Polynomials Functions
* 3.3: The Remainder Theorem
* 3.4: Factoring Review \& The Factor Theorem
3.5: Applications \& Word Problems

4. Work on practice questions from Workbook

Plan Going Forwards

1. I will hand back the Chapter 2 marked test at the start of next class.
2. Review for the Unit 1 Exam. Do Chapter reviews for 1 and 2. Re-do all practice questions from handouts.

UNIT 1 EXAM ON CH1\&2 ON TUESDAY, FEB. 6TH

- 10 Multiple Choice \& 20 marks on the Written
- ~1 hour - please prepare so you are not "learning" while doing the test
- Closed-book - no notes
- Rewrite is following Tuesday after class at 12:30pm
- I will go over the marked exam on Thursday

3. We will continue Chapter 3 Polynomials on Tuesday after the U1 Test. Work on 3.1-3.2 questions in the workbook.

NO CHECR $-1 N$ @UIZ ON TUESDAY. FEB. GTH

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at anurita.weebly.com after class. Anurita Dhiman = adhiman@sd35.bc.ca
3.1 Polynomials p.113

$$
\begin{aligned}
& \text { Constant } \\
& \text { term } \\
& =y \text {-intercept } \\
& \left(0, a_{0}\right)
\end{aligned}
$$

$$
x^{0}=1
$$

$n=$ degree of function
(highest exponent)
= the coefficient in front of term with highest degree.
ex: $\quad x^{2}-5 x+10 x^{4}+3 x^{3}$

$$
a=10 \quad n=4
$$

$($ degree $=4)$

Summary: refer to chart

Even degrees
ex: x^{2}, x^{4}, x^{6}
ta (l leading leading
end behavior

$$
=\text { up into } O I I+Q I
$$

$-a \rightarrow$ end behaviour
= down in to QIII + QII
x-intercepts:
0 to n
turning points:

$$
\begin{aligned}
& 1,3,5, \ldots . . \\
& \text { up to } n-1 \\
&\{x \mid x \in \mathbb{R}\} \\
&+a:\{y \mid y \geqslant \text { minimum }, y \in \mathbb{R}\} . \\
&-a:\{y \mid y \leqslant \text { maximum }, y \in R\} .
\end{aligned}
$$

Note: x-intercepts $=$ zeros $=$ roots $=$ solutions

Multiplicity $=$ how δ fen an x-intercept is counted.
p. $118=$ depends on shape of graph.
ex: if a graph has a solution (x-intercept) repeat ' r ' number of times, it has a multiplicity of " r ".
ex: b) $g(x)=x^{5}+x^{4}-2 x^{3}-2 x^{2}+x+1$
review: degree $=5 \quad(n=5)$
$a=1 \quad$ (kading coefficient =1)

$$
(+)
$$

$$
\begin{aligned}
& \text { behawcar: douninto QIII ap into QI } \\
& \begin{array}{l}
\text { possible\#tod } \\
x \rightarrow \text { interepd } \\
\end{array}=1-5 \\
& \text { possible \#d }=0,2,4 \\
& \text { turning poomts } \\
& R:\{y \mid y \in \mathbb{R}\} \text {. } \\
& y \text {-int: }(0,1) \\
& g(x)=(x-1)^{2}(x+1)^{3} \\
& \text { solutions }=x=1 \quad x=-1 \quad x \text {-intercepts. }
\end{aligned}
$$

multiplicity multiplicity
on 3 .

What is a polynomial function?

Polynomial Function Expression

Polynomial Function: Expanded Form

$$
f(x)=2 x^{4}-x^{3}+2 x^{2}-7
$$

monomial	$\frac{2 x}{1}$
binomial	$\frac{2 x+\frac{3 y}{1}}{2}$
trinomial	$\frac{2 x^{2}+\frac{3 x}{2}+\frac{5}{3}}{1}$
polynomial	$\frac{3 x^{3}}{1}+\frac{2 x^{2}-\frac{6 x}{2}+\frac{2}{4}}{4}$

Non-Examples of Polynomials

$\frac{a^{2}}{b^{3}}$	Fractions, Division

Square Roots $\sqrt{x^{2}+2 x+2}$
$9^{2 x}$ Variables as the exponent
Negatives as the exponent $8 x^{-3}=\frac{8}{x^{3}}$

POI. YNOMIAI. ORNOT?

Shade each polynomial. If it is not a polynomial, explain why.

Types of Polynomial

Types of Polynomial (Number of Terms)

Types of Polynomial (Degree)

| Constant |
| :---: | :---: | :---: |
| Polynomial |
| (Degree 0) |
| 8 |
| $-\frac{2}{3}$ |
| Linear |
| (Degree 1) |
| $x+8$ |
| $\frac{3}{4} x-6$ | | Quadratic |
| :---: |
| Polynomial |
| (Degree 2) |
| $3 x^{2}-2 x+7$ |
| $5 y^{2}-\frac{1}{4}$ | | Cubic |
| :---: |
| Polynomial |
| (Degree 3) |
| $5 x^{3}$ |
| $2 y^{3}-y+4$ |

$2 x^{3}+8 x^{2}-17 x-3$

TERM	$2 x^{3}$	$8 x^{2}$	$-17 x$	-3
DEGREE OF TERM	3	2	1	0
DEGREE OF POLYNOMIAL	3			
LEADING TERM	$2 x^{3}$			
LEADING COEFFICIENT	2			
CONSTANT TERM	-3			

Examples of Polynomial Functions

Examples of Nonpolynomial Functions

If " n " is even, the graph of the polynomial is " U -shaped" meaning it is parabolic (the higher the degree, the more curves the graph will have in it).
https://www.slideshare.net/morrobea/63evaluatingandgraphingpolynomilafunctions

If " n " is odd, the graph of the polynomial is "snake-like" meaning looks like a snake (the higher the degree, the more curves the graph will have in it).

The end behavior of a polynomial function's graph is the behavior of the graph as \boldsymbol{x} approaches infinity $(+\infty)$ or negative infinity $(-\infty)$. The expression $x \longrightarrow+\infty$ is read as " x approaches positive infinity."

END BEHAVIOR

Degree is odd

Leading coefficient is positive	Start low, End high
Leading coefficient is negative	Start high,

Degree is even

Leading Start high,
coefficient Endhigh
is positive

Leading Start low,
coefficient End low
is negative
with a positive leading coefficient

Even degree polynomials

with a negative leading coefficient

Degree and Leading coefficient tells us the behaviour of the graph.

$$
\begin{array}{cr}
y=-x^{4}+2 x^{3}-x^{2}+3 x+20 & \text { Negative even } \\
y=-10 x^{5}-3 x^{3}+2 x-4 & \text { Negative odd } \\
y=(x+5)(x-3)(2 x+4) & \text { Positive odd } \\
x(x)(2 x)=2 x^{3} & \\
\left.y=x(x-4)^{2}(3 x)+1\right) & \text { Positive even } \\
y=x^{2}\left(3(x)^{2}(3 x)=3 x^{4}\right. & \\
x^{2}(-x)(x)^{3}=-x^{6} &
\end{array}
$$

Determine the left and right behavior of the graph of each polynomial function.

$$
f(x)=x^{4}+2 x^{2}-3 x
$$

Even, Leading coefficient 1 (positive), starts high ends high

$$
f(x)=-x^{5}+3 x^{4}-x
$$

Odd, Leading coefficient 1 (negative), starts high ends low

$$
f(x)=2 x^{3}-3 x^{2}+5
$$

ODD, Leading coefficient 2 (positive), starts LOW ends HIGH

Degree tells us the number of possible x-intercepts (roots or zeros)

Degree tells us the number of possible x-intercepts (roots or zeros) Degree tells us the possible number of turns in the graph

$$
\begin{array}{cc}
(x, 0) & (0, y) \\
\uparrow & \uparrow \\
x \text {-intercept } & y \text {-intercept }
\end{array}
$$

https://slideplayer.com/slide/9143093/

3.1 Characteristics of Polynomials Summary Sheet

Type of Function	Constant $y=x^{0}+C$	$\begin{aligned} & \text { Linear } \\ & y=a x+C \rightarrow \\ & y=a x^{1}+C \end{aligned}$	$\begin{gathered} \text { Quadratic } \\ y=a x^{2}+b x+C \end{gathered}$	Cubic $y=a x^{3}+b x^{2}+c x+C$
Degree, n	0, zero	1	2	3
End Behaviour	If constant is positive \rightarrow Quadrant II to I If constant is negative \rightarrow Quadrant III to IV	If leading coefficient is positive \rightarrow Quadrant III to 1 If leading coefficient is negative \rightarrow Quadrant II to IV	If leading coefficient is positive \rightarrow Quadrant II to I If leading coefficient is negative \rightarrow Quadrant III to IV	If leading coefficient is positive \rightarrow Quadrant III to I If leading coefficient is negative \rightarrow Quadrant II to IV
Number of x-intercepts	0 unless the constant functions lies on the y axis, then all points are the x-intercepts	1	0,1, or 2	1,2, or 3
Number of y-intercepts	1	1	1	1
Number of turning points	0	0	1	0 or 2
Domain	$\{x \mid x \in R\}$			
Range	$\{y \mid y=C, y \in R\}$	$\{y \mid y \in R\}$	$\begin{aligned} & \{y \mid y \geq \text { vertex, } y \in R\} \\ & \text { or } \\ & \{y \mid y \leq \text { vertex, } y \in R\} \end{aligned}$	$\{y \mid y \in R\}$

HOW TO FIND EXAMPLES X \& Y INTERCEPTS

 $f(x)=x^{2}+5 x+6$$x$-intercept ($\mathrm{x}, 0$)

$0=x^{2}+5 x+6$ $0=(x+3)(x+2)$ $x=-3 \quad x=-2$ $(-3,0)(-2,0)$ y-intercept ($0, y$)
$y=0^{2}+5(0)+6$ $y=6$
$(0,6)$

INTERCEPTS AND ZEROS

To find the x-intercepts of $y=f(x)$, set $y=0$ and solve for x.
x-intercepts correspond to the zeros of the function

Example: How many roots will the following functions have?

$$
\begin{array}{rl}
y=-x^{4}+2 x^{3}-x^{2}+3 x+20 & 4 \text { roots } \\
y=-10 x^{5}-3 x^{3}+2 x-4 & 5 \text { roots } \\
y=x(x-4)^{2}(3 x+1) & 1-5 \\
y & 4 \text { roots } \\
y(x)^{2}(3 x)=3 x^{4} & 0-4 \\
y & =x^{2}(3-x)(x+4)^{3} \\
x^{2}(-x)(x)^{3}=-x^{6} & 6 \text { roots } 0-6
\end{array}
$$

How many zeros do these graphs
have? ?? ?

3.4 Multiplicity

Multiplicity is the number of times an x-intercept occurs in a graph:

Roots

Multiplicity of roots

Single root
Example: Factor ($\mathrm{x}+2$)
root: -2
graph goes straight through root

double root Example: Factor $(x-1)^{2}$
root: 1 (M2)
graph goes through the root like a
 quadratic

triple root Example: Factor $(\mathrm{x}+4)^{3}$

 root: -4 (M3)graph goes through the root like a cubic

If you factor the polynomial, you can see the value of the x-intercepts (roots) and the corresponding multiplicity

Real roots are x-intercepts.
To find the roots, we let $\mathrm{y}=0$ and solve for x .

Example: Find the roots for the following.

$$
\begin{aligned}
& y=(x+5)(x-3)(2 x+4) \quad \text { Roots: }-5,3,-2 \\
& y=x(x-4)^{2}(3 x+1) \quad \text { Roots: } 0,4(\mathrm{M} 2),-\frac{1}{3} \\
& y=x^{2}(3-x)(x+4)^{3} \quad \text { Roots: } 0(\mathrm{M} 2), 3,-4(\mathrm{M} 3)
\end{aligned}
$$

To find the y-intercept, make $x=0$ and solve for y :
Example: Find the y-intercept for each

$$
\begin{array}{ll}
y=(x+5)(x-3)(2 x+4) & y \text {-intercept: }(0,-60) \\
y=-x^{4}+2 x^{3}-x^{2}+3 x+20 & y \text {-intercept: }(0,20) \\
y=x^{2}(3-x)(x+4)^{3} & y \text {-intercept: }(0,0)
\end{array}
$$

To graph a polynomial function:

1. Determine the y-intercept by making $x=0$
2. Determine the x-intercepts by solving the polynomial when $y=0$
(or you can use your graphing calculator to find these characteristics)
3. Use the degree and leading coefficient to determine behaviour.
4. Use the table of values to estimate the relative and/or absolute Max's and Min's and get other points.
5. Draw the curve with the correct behaviour.

Graph $f(x)=x^{3}+x^{2}-4 x-1$.

SOLUTION

To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

Graph $f(x)=-x^{4}-2 x^{3}+2 x^{2}+4 x$.

SOLUTION

To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

Now we are ready to graph.
State the type, roots, y-intercept and graph.
$y=2(x-3)(x+4)(x-1)$

Type: \qquad
positive odd
roots: 3, -4, 1
y-intercept:

