Plan For Today:

- 1. Go over Unit 1 Exam results. Will you rewrite on Tuesday at 12:30pm?
- 2. Question about Polynomial characteristics or synthetic division? Practice.
 - ◆ Do 3.1-3.3 Check-in Quiz
- 3. Finish Chapter 3: Polynomial Functions
 - 3.1: Characteristics of Polynomial Functions
 - ✓ 3.2: Equations & Graphs of Polynomials Functions
 - 3.3: Division of Polynomials
 - * 3.4: The Remainder & Factor Theorem
 - * 3.5: Application: & Word Problem:
- 3. Work on practice questions from Workbook

Plan Going Forward:

2. Work on 3.3-3.5 questions in the workbook and finish working on Ch3 project.

CHAPTER 3 PROJECT DUE TUESDAY, FEB. 13TH

* Chapter 3 test on tuesday, Feb. 13th

4. We will start Chapter 4 next Tuesday after the Ch3 Test.

- 12:30pm in room Å179
- 12 Multiple Choice & 18 marks on the Written
- Closed-book no notes

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at <u>anurita.weebly.com</u> after class. Anurita Dhiman = adhiman@sd35.bc.ca

Thursday, Feb. 8th In-Class Notes							
PDF							
3.1-3.3							
Check-in							
Feb. 8, 20	024 Nam			TOTAL -	/ 6 marks		
FCD. 0, 24	024 Nam	ic					
			uiz Section 3.1				
Po	olynomial Gr	raph Chara	cteristics & Div	iding Polyno	mials		
			ALL WORK and steps w				
1. C	Complete the follo	wing characteris	stics for the following	function:	(2 marks)		
		f(x) =	$-x^4 + 2x^2 - 5x + 7$	< u-mt			
	1. Degree =	4 (E	stics for the following $-x^4 + 2x^2 - 5x + 7$ VEN	9	1		
	2. Leading Co	efficient =	(NEGATIV	E)			
	3. Behaviour :	= dam	into QUI t	QT			
	4 Dessible #	- f to one in the s					
		of turning points =					
	5. Possible # c	of x-intercepts =	0 to 4				
	6. Coordinate	of y-intercept =	(0,7)	Mt 11-7 -1	0.5		
				<i>s</i> i <i>y</i> - <i>i</i>]		
2. A f(x)	inswer the question	ons about the gra	ph of the polynomial		ch = 2 marks)		
3		t					
2-		a) What	t are all possible degre	es this function car	have?		
-4 -8 -2 -1	2 4 5	6 z	$\chi'(MW)$	6,8,10	EVEN 24 Degrees 24		
-1		b) How	many x-intercepts doe	x - intercept s			
3		c) What	יבי ב t is the domain and ra	nge?			
-45		c)	t is the domain and rate $z < x \in C$	IRS, EYI	y ≫ -4, years		
d) W		rcepts, including	g their multiplicity?				
	(-3,0)	(2,0)	(5,0)	possible	equation		
	x=-3			Pharal	x+3 Xx-2 2=5)		
	M=1	Ma	مر ۲۰۰۶ M : ۱ Page 1 of 2	7.45- 4			

Page 2 of 2

Remainder Theorem = when P(x) is divided by (x-o)then P(a) = Remainder

Ex p. 142 #10

$$p(x) = x^{4} + 3x^{3} - 7x + 2$$
 $k=-2$
 $(x+2)$ is
 $p(-2) = (-2)^{3} + 3(-2)^{3} - 7(-2) + 2$ $x=-2$
 $248 = 16 - 24 + 14 + 2$ Sub into $P(x)$
Remainder = 8
Solve for K using remainder theorem
 $p(x) = - - k - - - = R$
2a) $x^{3} + kx + 1 = x - 2$ $R = -3$
 $(x)^{3} + k(x) + 1 = -3$

2k + 1 = -3

8 +

-9

$$2k + 9 = \frac{3}{4}$$

$$2k - -12$$

$$k = -12$$

$$k + 10 = 2k + 12$$

$$-k = 2,$$

$$k = -2,$$

$$k = -$$

X

3

7

12

-12 0_

-6

$$(x-3) \begin{pmatrix} 3x^{-1}x^{-2}y \\ (x \) & AC - 18 \\ 3x^{2} - 2x/9x^{-6}y - 2A^{2} = 7 \\ x(5x-9) + 3(3y-3) \\ (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(3y-3) \\ (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(3y-3) \\ (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(3y-3) \\ (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(3y-3) \\ (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(3y-3) \\ (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(3y-3) \\ (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(3y-3) \\ (x-3) \end{pmatrix} = 5(1 + x) \\ (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(2x-3) \\ (x-3) \end{pmatrix} + (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(2x-3) \\ (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(2x-3) \\ (x-3) \end{pmatrix} + (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(2x-3) \\ (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(2x-3) \\ (x-3) \end{pmatrix} = 5(1 + x) \\ (x-3) \begin{pmatrix} 2x-3 \\ x+3 \end{pmatrix} + 3(2x-3) \\ ($$

x=int NOTE: Factored form of P(x) = (X X)shows x-intercepts $x=\Box x=\Box$ x=-41,-2,2,-3 X=D x=D x=D = ±1, ±2, -3 Multiplicity is the exponent. Shetch: x-intercepts + multiplicity behaviour y-intercept

7. An open top box is made from a piece of cardboard measuring 5 in by 8 in. Cutting out squares from each corner and folding the edges up makes a box with a volume of 14 in³. How large of a square must be cut from each corner?

3.4 Factoring Review

Common Factor First: GCF = Greatest Common Factor

Factor Out the GCF

The first step to factoring is to factor out the greatest common factor (GCF) from each term.

Difference of Squares

$$a^2 - b^2 = (a+b)(a-b)$$

Examples:

9
$$x^{2}$$
-16
= $(3x)^{2}$ -4²
= $(3x+4)(3x-4)$
4 x^{2} -81 y^{2}
= $(2x)^{2}$ -(9 y)²
= $(2x+9y)(2x-9y)$

Trinomial Factoring Where the Leading Coefficient 'a' = 1

$ax^2 + bx + c$

To factor $x^2 + bx + c$:

- 1. First arrange in descending order.
- **2.** Use a trial-and-error procedure that looks for factors of *c* whose sum is *b*.
 - If *c* is positive, then the signs of the factors are the same as the sign of *b*.
 - If *c* is negative, then one factor is positive and the other is negative. (If the sum of the two factors is the opposite of *b*, changing the signs of each factor will give the desired factors whose sum is *b*.)

3. Check your result by multiplying.

Thus the factorization is

(x + 3)(x + 5), or (x + 5)(x + 3)

by the commutative law of multiplication. In general,

$$(x + p)(x + q) = x^2 + (p + q)x + pq.$$

To factor, we can use this equation in reverse.

Factoring Trinomials with a =1

Factor Trinomial with Negative Leading Coefficient

When the leading coefficient of a polynomial is negative, we can factor out a common factor with a negative coefficient.

4x - 5

5x + x - 5

Examples:

$$\begin{array}{ll} -5x^2 + x + 4 & -3x^3 + 12x^2 + 15x \\ = -(5x^2 - x - 4) & = -3x(x^2 - 4x - 5) \\ = -(5x^2 - 5x + 4x - 4) & = -3x(x^2 - 5x + x - 5) \\ = -(5x(x - 1) + 4(x - 1)) & = -3x(x(x - 5) + (x - 5)) \\ = -(5x + 4)(x - 1) & = -3x(x + 1)(x - 5) \end{array}$$

Perfect Square Trinomials (PST) $a^{2} + 2ab + b^{2} = (a+b)(a+b) = (a+b)^{2}$ $a^{2}-2ab+b^{2}=(a-b)(a-b)=(a-b)^{2}$

Examples:

 $9x^2 - 12x + 4$ $x^{2} + 12x + 36$ $=(3x)^{2}-(3)(2)x+2^{2}$ $= x^{2} + (2)(6)x + 6^{2}$ $=(x+6)^{2}$ $=(3x-2)^{2}$

There are many methods for factoring a trinomial where $a \neq 1$ 1. The FOIL method is the same as a 'Guess and Check' Method

THE FOIL METHOD

To factor trinomials of the type $ax^2 + bx + c$, $a \neq 1$, using the **FOIL method**:

- 1. Factor out the largest common factor.
- **2.** Find two First terms whose product is ax^2 :

3. Find two Last terms whose product is *c*:

4. Repeat steps (2) and (3) until a combination is found for which the sum of the Outside and Inside products is *bx*:

5. Always check by multiplying.

TIPS FOR FACTORING $ax^2 + bx + c$, $a \neq 1$, USING THE FOIL METHOD

- 1. If the largest common factor has been factored out of the original trinomial, then no binomial factor can have a common factor (other than 1 or -1).
- 2. a) If the signs of all the terms are positive, then the signs of all the terms of the binomial factors are positive.
 - **b**) If *a* and *c* are positive and *b* is negative, then the signs of the factors of *c* are negative.
 - c) If *a* is positive and *c* is negative, then the factors of *c* will have opposite signs.
- 3. Be systematic about your trials. Keep track of those you have tried and those you have not.
- 4. Changing the signs of the factors of *c* will change the sign of the middle term.

1. The AC Method here is the Decomposition method; also knows as the Factor by Grouping method.

THE ac-METHOD

To factor $ax^2 + bx + c$, $a \neq 1$, using the *ac*-method:

- 1. Factor out the largest common factor.
- **2.** Multiply the leading coefficient *a* and the constant *c*.
- 3. Try to factor the product ac so that the sum of the factors is b. That
- is, find integers p and q such that pq = ac and p + q = b.
- **4.** Split the middle term. That is, write it as a sum using the factors found in step (3).
- 5. Factor by grouping.
- 6. Always check by multiplying.

Factoring Polynomials:

Quadratic Trinomials with a Leading coefficient \neq 1

- a) Factoring by Decomposition
- 1. Multiply a and c
- 2. Look for two numbers that multiply to that product and add to b
- 3. Break down the middle term into two terms using those two numbers
- 4. Find the common factor for the first pair and factor it out & then find the common factor for the second pair and factor it out.
- 5. From the two new terms, place the common factor in one bracket and the factored out factors in the other bracket.

 $a \times c = -20$ The 2 nos. are -20 & 1

$$5x^{2} - 19x - 4$$

= $5x^{2} - 20x + 1x - 4$
= $5x(x - 4) + 1(x - 4)$
= $(x - 4)(5x + 1)$

Solving General Trinomials - the Decomposition Methodylaye

The product is $3 \times 8 = 24$. The sum is -10.

Factors of 24		
1	24	
2	12	
3	8	
4	6	

Rewrite the middle term of the polynomial using -6 and -4. (-6x - 4x is just another way of expressing-10x.)

3x(x-2) - 4(x-2)

(x - 2)(3x - 4)

Factor by grouping.

3. This is the Short-cut Method I like to use.

$\begin{array}{c c} 3x^2 - 19x - 14\\ A = 3, C = -14 \stackrel{\bullet}{\rightarrow} AC = -\\ 42\\ \hline \\ Two numbers that \\ multiply to -42 but add \\ to -19\\ \hline \\ These numbers are: -21\\ and +2\\ \hline \\ Replace the middle (b) \\ term with these two factors written with an x \\ 3x^2 - 21x + 2x - 14\\ Split it in half and factor each half\\ 3x^2 - 21x + 2x - 14\\ 3x(x - 7) + 2(x - 7)\\ \hline \\ Place each term in front of the binomials \\ 3x^2 - 21x + 2x - 7\\ \hline \\ Place each term in front of the binomials \\ 3x(x - 7) + 2(x - 7)\\ \hline \\ Place each term in front of the binomials \\ (3x - 21)(3x + 2)\\ \hline \\ Place each term in front of the binomials \\ (3x - 21)(3x + 2)\\ \hline \\ \hline \\ Done!\\ \hline \\ \hline$	Decomposition	Short-cut Factoring		
42 $A = 3, C = -14 \Rightarrow AC = -42$ Two numbers that multiply to -42 but add to -19Two numbers that multiply to -42 but add to -19These numbers are: -21 and +2These numbers are: -21 and +2Replace the middle (b) term with these two factors written with an x $3x^2 - 21x + 2x - 14$ Place the first term of the trinomial without the squared in the first spot of each half $3x^2 - 21x + 2x - 14$ $3x^2 - 21x +2x - 14$ $3x^2 - 21x +2x - 14$ $3x(x - 7) + 2(x - 7)$ Place the two factors (-21 & +2) in the brackets to form the binomialsPlace each term in front of the brackets in its own bracket and write the other common binomial in one bracket.Reduce the terms in the binomials like you would fractions $(3x + 2)(x - 7)$ Done!Done!		$3x^2 - 19x - 14$		
multiply to -42 but add to -19multiply to -42 but add to -19These numbers are: -21 and +2These numbers are: -21 and +2Replace the middle (b) term with these two factors written with an x $3x^2 - 21x + 2x - 14$ Split it in half and factor each halfPlace the first term of the trinomial without the squared in the first spot of each factored bracket $(3x - 21x +2x - 14)$ $3x(x - 7) + 2(x - 7)$ Place the two factors (-21 $(3x - 21)(3x + 2)$ Place each term in from of the brackets and write the other common binomial in one bracket. $(3x + 2)(x - 7)$ Reduce the terms in the binomials like you would fractionsDone!Done!Done!	-	$A = 3, C = -14 \rightarrow AC = -42$		
and +2and +2Replace the middle (b) term with these two factors written with an xPlace the first term of the trinomial without the squared in the first spot of each factored bracket $3x^2 - 21x + 2x - 14$ ($3x)(3x)$ Split it in half and factore each halfPlace the two factors (-21 & +2) in the brackets to form the binomials $3x^2 - 21x +2x - 14$ Reduce the terms in the binomials $3x^2 - 21x +2x - 14$ ($3x - 21$)($3x + 2$)Place each term in front of the brackets in if own bracket and write the other common binomial in one bracket.Reduce the terms in the binomials like you would fractions $(3x + 2)(x - 7)$ Done!Done!Done!	multiply to -42 but add	multiply to -42 but add to		
term with these two factors written with an x $3x^2 - 21x + 2x - 14$ Split it in half and factor each half $3x^2 - 21x +2x - 14$ 3x(x - 7) + 2(x - 7) Place each term in front of the brackets in its own bracket and write the other common binomial in one bracket. (3x - 21)(3x + 2) Place terms in the binomials like you would fractions (1x - 21)(3x + 2) Done! Done! Done! Done!				
Split it in half and factor each half $3x^2 - 21x +2x - 14$ 3x(x-7) + 2(x-7) Place each term in front of the brackets in its own bracket and write the other common binomial in one bracket. (3x - 21)(3x + 2) Reduce the terms in the binomials like you would fractions $(_1\beta x - \beta f_7)(3x + 2)$ = (x-7)(3x + 2) Done! Done!	term with these two factors written with an x	trinomial without the squared in the first spot of		
each halfPlace the two factors (-21 & +2) in the brackets to form the binomials $3x^2 - 21x +2x - 14$ $3x(x - 7) + 2(x - 7)$ Place the two factors (-21 & +2) in the brackets to form the binomialsPlace each term in front of the brackets in its own bracket and write the other common binomial in one bracket.Reduce the terms in the binomials like you would fractions $(3x + 2)(x - 7)$ Reduce the terms in the binomials like you would fractions $(3x + 2)(x - 7)$ Done!Done!Done!	$3x^2 - 21x + 2x - 14$	(3x)(3x)		
3x(x-7)+2(x-7) Place each term in front of the brackets in its own bracket and write the other common binomial in one bracket. (3x+2)(x-7) Done! $(3x-21)(3x+2)$ $=(x-7)(3x+2)$ $=(x-7)(3x+2)$ Done!	each half	& +2) in the brackets to		
Place each term in front of the brackets in its own bracket and write the other common binomial in one bracket.Reduce the terms in the binomials like you would fractions $(3x+2)(x-7)$ Done! $(1 \not \exists x - \not z \not l_7)(3x+2)$ $= (x-7)(3x+2)$ Done!				
(3x+2)(x-7) Done! $=(x-7)(3x+2)$ Done!	of the brackets in its own bracket and write the other common	Reduce the terms in the binomials like you would fractions		
Done! Done! <th< td=""><td>(3x+2)(x-7)</td><th>$\binom{1}{3}x - 2I_7(3x+2)$ = $(x-7)(3x+2)$</th><td></td><td></td></th<>	(3x+2)(x-7)	$\binom{1}{3}x - 2I_7(3x+2)$ = $(x-7)(3x+2)$		
Factoring Review & Practice	Done!			
Factoring Review & Practice				
	F;	actoring Review & Practice		

Review of Algebra and Factoring

FACTORING REVIEW.

Common Factoring

Determine the greatest common factor by checking what the largest term divisible by all terms is (numbers and variables).

Ex.
$$2x^2 - 6x \rightarrow 2x(x-3)$$

Complete the following for practice:

a)
$$3x^{3} - 9x^{2}$$

GCF = $3x^{2}(x - 3)$

Binomial Factoring with a Difference of Squares

When the 2 terms of the binomial are perfect squares and there is a subtraction between them, you can use this method for factoring. Form must be $(a^2 - b^2)$.

Ex.
$$x^2 - 9 \rightarrow (x+3)(x-3)$$
 $4x^2 - 25y^2 \rightarrow (2x+5y)(2x-5y)$

Here, you put the square root of x and the square root of 9 in each bracket with different signs between them: this is the difference of squares factoring.

NOTE: $x^2 + 9$ is a sum of squares and cannot be factored.

Complete the following:

a)
$$a^2 - 16$$
 b) $144 - 9y^2$

Trinomial Factoring

A trinomial is in the form: $ax^2 + bx + c$. There are different methods for trinomial factoring; including decomposition, guess and check, short-cut factoring, box method. I will show you decomposition and short-cut factoring (I usually do short-cut factoring in class).

When a trinomial has a leading coefficient of 1, the method is simple:

 $x^2 - 4x - 5 \rightarrow C = -5.$

Find two numbers that multiply to -5 but add to -4. Here the two numbers or factors are -5 and +1. Place these two factors in the brackets with x and you're done.

$$x^{2}-4x-5=(x-5)(x+1)$$

When the leading coefficient is not 1, use one of the following methods.

Decomposition	Short-cut Factoring	Another Short-cut Factoring	Box Method
$3x^2 - 19x - 14$	$3x^2 - 19x - 14$	$3x^2 - 19x - 14$	$3x^2 - 19x - 14$
$A = 3, C = -14 \Rightarrow AC = -42$	$A = 3, C = -14 \rightarrow AC = -42$	$A = 3, C = -14 \Rightarrow AC = -42$	$A = 3, C = -14 \Rightarrow AC = -$
Two numbers that multiply to -42 but add to -19	Two numbers that multiply to -42 but add to -19	Two numbers that multiply to -42 but add to -19	Two numbers that multiply to -42 but add
		These numbers are: -21 and +2	to -19
These numbers are: -21 and +2	These numbers are: -21 and +2	Rewrite the trinomial with the AC as the last term	These numbers are: -21 and +2
Replace the middle (b) term with these two factors written with an x	Place the first term of the trinomial without the squared in the first spot of	$x^2 - 19x - 42$	Place the first and last term in the box in the first and last spot
$3x^2 - 21x + 2x - 14$	each factored bracket (3x)(3x)	Place the two factors (-21 & +2) in the brackets to form the binomials	3x ² -14
Split it in half and factor each half		(x-21)(x+2)	Place the two factors
$3x^2 - 21x + 2x - 14$	Place the two factors (-21 & +2) in the brackets to form the binomials	Divide and reduce the constant in each bracket by the A from	with x in the second and third box
3x(x-7) + 2(x-7)	(3x-21)(3x+2)	original trinomial	$\begin{array}{ c c c c }\hline 3x^2 & -21x \\\hline 2x & -14 \\\hline \end{array}$
Place each term in front of the brackets in its own bracket and write	Reduce the terms in the binomials like you would	$\left(x-\frac{21}{3}\right)\left(x+\frac{2}{3}\right) = \left(x-7\right)\left(x+\frac{2}{3}\right)$	Common factor each row and each column
the other common binomial in one bracket.	fractions	If there is still a denominator, write that number in front of the <i>x</i>	and collect the factors in two brackets for final
(3x+2)(x-7)	$(_{1}\not 3x - \not 2\not 1_{7})(3x+2)$ = $(x-7)(3x+2)$	in the same brackets to get final factored form.	factored form. $3x^2 - 21x 3x$
Done!	-(x-7)(3x+2) Done!	$(x-7)\left(x+\frac{2}{3}\right) = (x-7)(3x+2)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			(3x+2)(x-7)

Complete the following using a method of your choice:

c) $2x^2 + x - 1$

d)
$$2x^2 - 3x - 2$$

To solve, you make each binomial bracket equal zero and solve for *x*.

Solving the example from above:

$$(3x+2)(x-7)
3x+2=0 x-7=0
3x=-2 x=7
x=-2
x=-2
x=-2$$

Kuta Software - Infinite Algebra 1 Name___ Factoring Trinomials (a = 1)Date_____ Period____ Factor each completely. 1) $b^2 + 8b + 7$ 2) $n^2 - 11n + 10$ 4) $n^2 + 4n - 12$ 3) $m^2 + m - 90$ 5) $n^2 - 10n + 9$ 6) $b^2 + 16b + 64$ 8) $x^2 - 4x + 24$ 7) $m^2 + 2m - 24$ 9) $k^2 - 13k + 40$ 10) $a^2 + 11a + 18$ 11) $n^2 - n - 56$ 12) $n^2 - 5n + 6$ -1-

13)
$$b^2 - 6b + 8$$
 14) $n^2 + 6n + 8$

 15) $2n^2 + 6n - 108$
 16) $5n^2 + 10n + 20$

 17) $2k^2 + 22k + 60$
 18) $a^2 - a - 90$

 19) $p^2 + 11p + 10$
 20) $5v^2 - 30v + 40$

 21) $2p^2 + 2p - 4$
 22) $4v^2 - 4v - 8$

 23) $x^2 - 15x + 50$
 24) $v^2 - 7v + 10$

 25) $p^2 + 3p - 18$
 26) $6v^2 + 66v + 60$

Kuta Software - Infinite Algebra 1 Factoring Trinomials (a = 1) Factor each completely.

1)
$$b^2 + 8b + 7$$

(b + 7)(b + 1)

Name_____ Date_____ Period____

2)
$$n^2 - 11n + 10$$

 $(n - 10)(n - 1)$

3)
$$m^2 + m - 90$$

(m - 9)(m + 10)
4) $n^2 + 4n - 12$
(n - 2)(n + 6)

5)
$$n^2 - 10n + 9$$

(n-1)(n-9)
(b+8)²
(b+8)²

7)
$$m^2 + 2m - 24$$

(m + 6)(m - 4)
8) $x^2 - 4x + 24$
Not factorable

9)
$$k^2 - 13k + 40$$

(k - 5)(k - 8)
(a + 2)(a + 9)

11)
$$n^2 - n - 56$$

(n + 7)(n - 8)
(n - 2)(n - 3)

-1-

13)
$$b^2 - 6b + 8$$
14) $n^2 + 6n + 8$ $(b-4)(b-2)$ $(n+2)(n+4)$

15)
$$2n^2 + 6n - 108$$
16) $5n^2 + 10n + 20$ $2(n+9)(n-6)$ $5(n^2 + 2n + 4)$

17)
$$2k^2 + 22k + 60$$
18) $a^2 - a - 90$ $2(k+5)(k+6)$ $(a-10)(a+9)$

19)
$$p^2 + 11p + 10$$
20) $5v^2 - 30v + 40$ $(p+10)(p+1)$ $5(v-2)(v-4)$

21)
$$2p^2 + 2p - 4$$

 $2(p-1)(p+2)$
22) $4v^2 - 4v - 8$
 $4(v+1)(v-2)$

23)
$$x^2 - 15x + 50$$

(x - 10)(x - 5)
24) $v^2 - 7v + 10$
(v - 5)(v - 2)

25)
$$p^2 + 3p - 18$$

(p - 3)(p + 6)
26) $6v^2 + 66v + 60$
 $6(v + 10)(v + 1)$

Create your own worksheets like this one with Infinite Algebra 1. Free trial available at KutaSoftware.com

Kuta Software - Infinite Algebra 1Name______Factoring Trinomials (a > 1)Date_____ Period___Factor each completely.2) $2n^2 + 3n - 9$

3) $3n^2 - 8n + 4$ 4) $5n^2 + 19n + 12$

5) $2v^2 + 11v + 5$

6) $2n^2 + 5n + 2$

7) $7a^2 + 53a + 28$

8) $9k^2 + 66k + 21$

-1-

9)
$$15n^2 - 27n - 6$$

10) $5x^2 - 18x + 9$
11) $4n^2 - 15n - 25$
12) $4x^2 - 35x + 49$
13) $4n^2 - 17n + 4$
14) $6x^2 + 7x - 49$
15) $6x^2 + 37x + 6$
16) $-6a^2 - 25a - 25$
17) $6n^2 + 5n - 6$
18) $16b^2 + 60b - 100$
 $-2-$

Kuta Software - Infinite Algebra 1Factoring Trinomials (a > 1)Factor each completely.

1)
$$3p^2 - 2p - 5$$

(3p - 5)(p + 1)
2) $2n^2 + 3n - 9$
(2n - 3)(n + 3)

3)
$$3n^2 - 8n + 4$$

(3n - 2)(n - 2)
(5n + 4)(n + 3)

5) $2v^2 + 11v + 5$ (2v + 1)(v + 5) 6) $2n^2 + 5n + 2$ (2n+1)(n+2)

Name_

Date_____ Period____

7) $7a^2 + 53a + 28$ (7a + 4)(a + 7) 8) $9k^2 + 66k + 21$ 3(3k + 1)(k + 7)

-1-

9)
$$15n^2 - 27n - 6$$

 $3(5n + 1)(n - 2)$
10) $5x^2 - 18x + 9$
 $(5x - 3)(x - 3)$

11)
$$4n^2 - 15n - 25$$

(n - 5)(4n + 5)
(x - 7)(4x - 7)
(x - 7)(4x - 7)

13)
$$4n^2 - 17n + 4$$
14) $6x^2 + 7x - 49$ $(n-4)(4n-1)$ $(3x-7)(2x+7)$

15)
$$6x^2 + 37x + 6$$

(x + 6)(6x + 1)
(2a + 5)(3a + 5)

17)
$$6n^2 + 5n - 6$$

(2n + 3)(3n - 2)
18) $16b^2 + 60b - 100$
 $4(b + 5)(4b - 5)$

Create your own worksheets like this one with Infinite Algebra 1. Free trial available at KutaSoftware.com

-2-

The factor theorem is when the remainder is zero

Remainder Theorem

If a polynomial f(x) is divided by (x - a), the remainder is f(a). f(x) = (x - a) Q(x) + f(a)

Factor Theorem

A polynomial f(x) has a factor (x - a) if and only if f(a) = 0.

Determining Potential Integral Zeros

List the potential integral zeros of f(x).

 $f(x) = x^3 + 2x^2 - 11x + 20$

Factors of the constant term: $\pm\,1,\pm\,2,\pm\,4,\pm\,5,\pm\,10,\pm\,20$

Potential Zeros: $\pm \{1, 2, 3, 4, 5, 10, 20\}$

Actual Zeros:

P(-5) = 0

Use the Factor Theorem: f(a) = 0

One Factor of the Polynomial is (x + 5)

The graph of the function will have an x-intercept at -5.

Remainder Theorem vs Factor Theorem

Remainder Theorem	Factor Theorem
	The factor theorem states that (x - a) is a factor of p(x) if and only if f(a) = 0.
	It is used to decide whether a linear polynomial is a factor of the given polynomial or not

The remainder and factor theorems together are used to solve/factorize polynomials.

(CODING HERO)

Potential Integral Zeros

± {1,3,5,15}

-5, -3, -1

List the possible integral zeros of f(x).

$f(x) = x^3 + 9x^2 + 23x + 15$

Factors of the constant term: $\pm 1, \pm 3, \pm 5, \pm 15$

Potential zeros:

Actual Zeros:

Use the Factor Theorem: f(a) = 0

Factors of the Polynomial: (x + 5) (x + 3) (x + 1)

The graph of the function will have x-intercepts at -5, -3 and -1.

When a polynomial cannot be factored using grouping, you can use the factor theorem to find a factor, then use synthetic division until you get to a quadratic which you can finish with quadratic factoring.

Polynomial Function: Factored Form

(y + 1) is a factor

= 1 + 4 + 5 - 2 - 8

 $f(x) = -x(x+2)^{3}(x-3)^{2}$

sign of leading coefficient

x-intercepts (roots) (-2,0), (0,0), (3,0)

Practice Word Problems

Your Turn

Three consecutive integers have a product of -210.

- a) Write a polynomial function to model this situation.
- **b)** What are the three integers?

- **12.** The competition swimming pool at Saanich Commonwealth Place is in the shape of a rectangular prism and has a volume of 2100 m³. The dimensions of the pool are x metres deep by 25x metres long by 10x + 1 metres wide. What are the actual dimensions of the pool?
- **13.** A boardwalk that is *x* feet wide is built around a rectangular pond. The pond is 30 ft wide and 40 ft long. The combined surface area of the pond and the boardwalk is 2000 ft². What is the width of the boardwalk?
- **16.** Three consecutive odd integers have a product of -105. What are the three integers?

- **14.** Determine the equation with least degree for each polynomial function. Sketch a graph of each.
 - a) a cubic function with zeros -3 (multiplicity 2) and 2 and y-intercept -18
 - b) a quintic function with zeros -1 (multiplicity 3) and 2 (multiplicity 2) and y-intercept 4
 - c) a quartic function with a negative leading coefficient, zeros −2 (multiplicity 2) and 3 (multiplicity 2), and a constant term of −6

3.5 Solving Polynomial Equations & Word Problems

The Zeros or Roots of a Polynomial Function

Graphically: the real zeros or real roots of a polynomial function are the x-intercepts of the graph.

Rational Zeros Theorem: If a polynomial function has rational zeros, they will be a ratio of the factors of the constant to the factors of the leading coefficient.

Example: $f(x) = 2x^3 - 9x^2 + 7x + 6$

$$\begin{array}{c} 6:\pm 1,\pm 2,\pm 3,\pm 6\\ 2:\pm 1,\pm 2 \end{array} \qquad - \ \pm 1,\pm 2,\pm 3,\pm 6 \end{array}$$