Plan For Todays

1. Go over Unit 1 Exam results. Will you rewrite on Tuesday at 12:30pm?
2. Question about Polynomial characteristics or synthetic division? Practice.

3. Finish Chapter 3: Polynomial Functions
\checkmark 3.1: Characteristics of Polynomial Functions
\checkmark 3.2: Equations \& Graphs of Polynomials Functions
\checkmark 3.3: Division of Polynomials
苝 3.4: The Remainder \& Factor Theorem

* 3.5s Applications \& Word Problems

3. Work on practice questions from Workbook

Plan Going Forwards

2. Work on 3.3-3.5 questions in the workbook and finish working on Ch 3 project.

> CHAPTER 3 PROJECT DUE TUESDAY, FEB, TBTH
> CHAPTER 3 TEST ON TUESDAY, FEB. ISTH
4. We will start Chapter 4 next Tuesday after the Ch3 Test.

UIIT 1 EXAM On CH1\&2 ON TUESDAY, FEB. $13 T H$

- 12:30pm in room A179
- 12 Multiple Choice \& 18 marks on the Written
- Closed-book - no notes

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at anurita.weebly.com after class. Anurita Dhiman = adhiman@sd35.bc.ca

TOTAL $=$ \qquad / 6 marks

Check-in Quiz Section 3.1-3.3:
Polynomial Graph Characteristics \& Dividing Polynomials

Complete the following questions SHOWING ALL WORK and steps where applicable.

1. Complete the following characteristics for the following function:

$$
\begin{aligned}
& \text { characteristics for the following function: } \\
& \left.\begin{array}{l}
\quad \text { degree } \\
f(x)=-x^{4}+2 x^{2}-5 x+7 \\
a
\end{array}\right) \text { (2 marks) }
\end{aligned}
$$

1. Degree $=4$ (EVEN)
2. Leading Coefficient $=-1 \quad(N E G A T I V E)$
3. Behaviour = dam in to $Q \mathbb{I}+Q \mathbb{I}$
4. Possible \# of turning points $=1$ CR 3
5. Possible \# of x -intercepts $=0$ to 4
6. Coordinate of y-intercept $=(0,7)$ NOT $y=7-0.5$

7. Answer the questions about the graph of the polynomial function shown:

$$
(0.5 \text { marks each }=2 \text { marks })
$$

$$
f(x)
$$

a) What are all possible degrees this function can have?

$$
x^{4}(M N), 6,8,10 \ldots \text { EVEN } \geqslant 4
$$

b) How many x-intercepts does this function have?

$$
3 \cdot x \text {-intercepts }
$$

c) What is the domain and range?
$\{x \mid x \in \mathbb{R}\},\{y \mid y \geqslant-4, y \in \mathbb{R}\}$
d) What are the x-intercepts, including their multiplicity?

$$
\begin{array}{cccc}
(-3,0) & (2,0) & (5,0) & \text { possible equation } \\
\text { ar } x=-3 & \text { or } x=2 & \text { or } x=5 & f(x)=a(x+3)(x-2)(x-5) \\
M: 1 & \mu: 2 & \text { page } 1 \text { of } 2 &
\end{array}
$$

3. Divide the polynomial $P(x)=3 x^{3}+2 x^{2}-5 x+7$ by the binomial $x-2$

You can do this by synthetic or long division.
Clearly state your final answer and put a BOX around it for full marks.

$$
\begin{aligned}
& x-2 \\
& 4_{2} \left\lvert\, \begin{array}{ccc}
3 x^{3}+2 x^{2}-5 x+7 \\
3 & 2 & -5 \\
+ & 7 \\
x & 3 & 8 \\
\hline & 16 & 22 \\
\hline \frac{3 x^{3}+2 x^{2}-5 x+7}{x-2} & =3 x^{2}+8 x+11+\frac{29}{x-2}
\end{array}\right.
\end{aligned}
$$

Division
statement
quotient remainder

Remainder Theorem
$=$ weer $P(x)$ is divided by $(x-a)$
then $P(a)=$ Remainder
Ex p. 143 \#la

$$
\begin{aligned}
& p(x)=x^{4}+3 x^{3}-7 x+2 \\
& k=-2 \\
& (x+2) \text { is } \\
& P(-2)=(-2)^{4}+3(-2)^{3}-7(-2)+2 \quad x^{\downarrow}=-2 \\
& \text { divisor } \\
& 1 \\
& =16-24+14+2 \\
& \text { sub into } P(x) \\
& \text { Remainder }=8
\end{aligned}
$$

Solve for k using remainder theorem

$$
P(x)=--k-\ldots=R
$$

Ra)

$$
\text { 2a) } \begin{gathered}
x^{3}+k x+1 \div \underset{\substack{\downarrow \\
\downarrow}}{x-2} \quad R=-3 \\
\downarrow \\
(2)^{3}+k(2)+1=-3 \\
8+2 k+1=
\end{gathered}
$$

$$
\begin{aligned}
2 k+9 & =-3 \\
\longrightarrow & -9 \\
2 k & =-\frac{12}{2} \\
k & =-6
\end{aligned}
$$

h)

$$
\begin{gathered}
\begin{array}{c}
\text { same } \\
\text { remainder } \\
P(1)
\end{array}=P(2) \\
3(1)^{4}+k(1)^{2}+7=(2)^{4}+k(2)-4 \\
3+k+7=16+2 k-4
\end{gathered}
$$

$\begin{aligned} k & =-2 \\ & =1\end{aligned}$

$$
\begin{aligned}
& k+10=2 k+12 \\
&-2 k \rightarrow-10 \\
&-k=2 \\
& k=-2
\end{aligned}
$$

Factor Theorem \rightarrow when a $P(x) \div x-a$ gives a remainder of zero
$[p(a)]$

$$
L D(a)=0] \text {, then } x-a
$$

$$
\text { IS a faster of } P(x)
$$

Ext. $140 \quad p(x)=3 x^{4}+4 x^{3}-3 x^{2}-3 x-10 \quad(x+2)$

$$
\begin{aligned}
\underbrace{x+2}_{\downarrow} & =3(-2)^{4}+4(-2)^{3}-3(-2)^{2}-3(-2)-10 \\
x=-2 & =48-32-12+6-10 \\
R & =0 \\
& \downarrow \\
R & =0 \quad \therefore(x+2) \text { IS A factor }
\end{aligned}
$$

Rational Root Theorem (aka Integral Zero

- C (constant term) is use to determine possible roots. Note: additional factors ore from $\frac{c}{a}$
- use these roots to find the factor (recall: $(x-a)$ is factor when $R=0$)
p. 145 \#5 a) $p(x)=3 x^{3}+x^{2}-20 x+12$
(1) determine $\rightarrow C=12 \rightarrow \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
$\begin{aligned} & \text { possible } \\ & \text { factors }\end{aligned} \quad+\frac{12}{3} \longrightarrow \frac{ \pm 1}{3}, \pm \frac{2}{3} \pm \frac{4}{3}$
(2) find one $\begin{aligned} & \text { factor }\end{aligned}$ TEST $P(X)=3(1)^{3}+(1)^{2}-20(1)+12 \rightarrow-4$
(3) fully factor $\quad P(-1)=-3+1+20+12 \rightarrow 30$ $(x-2)-\frac{P(2)}{P(-2)}=3(2)^{2}+\left(x^{2}-20(2)+12 \rightarrow 0\right.$ do synthetic division with this binemid

2	3	1	-20	12
+	\downarrow	6	14	-12
x	3	7	-6	0

TRy: \#4 a) b) c)
5) i
$* x^{5}$
need
p. 144
e)
$h \quad(x-1)$ three
factors $P(a)=0$
p. 145 h) $x^{5}+3 x^{4}-5 x^{3}-15 x^{2}+4 x+12$
$\begin{aligned} & \text { (1) possible } \\ & \text { roots }\end{aligned} \rightarrow 12 \rightarrow \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
(2) test $\rightarrow P(1)=(1)^{5}+3(1)^{4}-5(1)^{3}-15(1)^{2}+\operatorname{4in} \operatorname{since} P(x)=15 x^{5}$ (Degree 5)

$$
P(-1)=0
$$

$$
P(2)=\varnothing x
$$

you will reed three factors

$$
P(-2)=0
$$

etc.

$$
\frac{\downarrow}{x^{2}}
$$

(3) Division:
$x+1$

$x+1$	1	4	-1	-16	-12
+		-1	-3	4	12
x	$1 x^{3}$	3	-4	-12	0

$$
\begin{gathered}
\frac{x^{2}+x-6}{(x+3)(x-2)} \overbrace{-3,+2}^{-6}=1 \\
x^{5}=(x+1)(x-1)(x+2)(x+3)(x-2)
\end{gathered}
$$

NOTE: Factored form of $P(x)=\left(x_{\downarrow} x_{\downarrow}\right)$

$$
x=-41,-2,2,-3
$$

$$
\begin{aligned}
& (x-2)\binom{3 x^{2}+7 x-6}{A} \quad \sum \text { fully } \text { farmer. } \\
& (x) \quad A C-18 \\
& \underbrace{3 x^{2}-2 x}_{x(3 x-2)+3(3 x-2)} / \underbrace{9 x-6} \\
& (x+3)(3 x-2) \\
& =\frac{(x-2)(x+3)(3 x-2)}{\substack{i \\
x=2 \\
i=-3 \\
i=\frac{2}{3}}} \text { solve }
\end{aligned}
$$

$$
\begin{array}{rll}
\text { NOTE: Factored form } d P P(x)= & \left.\begin{array}{ll}
x \\
\downarrow
\end{array}\right) & x^{2}=\text { int } \\
\text { Shews } x \text {-intercepts } & x=\square & x=-1,1,-2,2,-3 \\
x=\square & x=\square & \\
x= \pm 1, \pm 2,-3
\end{array}
$$

Multiplicity is the exponent.

7. An open top box is made from a piece of cardboard measuring 5 in by 8 in . Cutting out squares from each comer and folding the edges up makes a box with a volume of $14 \mathrm{in}^{3}$. How large of a square must be cut from each comer?

3.4 Factoring Review

Common Factor First: GCF = Greatest Common Factor

Factor Out the GCF

The first step to factoring is to factor out the greatest common factor (GCF) from each term.

Example:

Factoring Techniques

Factor out the GCF

$$
\begin{aligned}
& 2 y x^{2}-8 x y-24 y \\
= & 2 y\left(x^{2}-4 x-12\right)
\end{aligned}
$$

Special Cases

Difference of
Two Squares
$x^{2}-9$
$=x^{2}-3^{2}$
$=(x+3)(x-3)$

Perfect Square Trinomial
$x^{2}-10 x+25$
$=(x-5)^{2}$
$(x-5)(x-5)$

Grouping/Decomposition

$$
\begin{aligned}
& 4 x^{2}-4 x-15 \\
= & 4 x^{2}-10 x+6 x-15 \\
= & 2 x(2 x-5)+3(2 x-5) \\
= & (2 x+3)(2 \mathrm{x}-5)
\end{aligned} \text { AC } \begin{aligned}
& 4 \times-15 \\
& =-60 \\
& -10,+6
\end{aligned}
$$

Difference of Squares

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

Examples:

$$
\begin{aligned}
& 9 x^{2}-16 \\
& =(3 x)^{2}-4^{2}
\end{aligned}
$$

$$
4 x^{2}-81 y^{2}
$$

$$
=(2 x)^{2}-(9 y)^{2}
$$

$$
=(3 x+4)(3 x-4) \quad=(2 x+9 y)(2 x-9 y)
$$

Trinomial Factoring Where the Leading Coefficient ' a ' $=1$

$$
a x^{2}+b x+c
$$

To factor $x^{2}+b x+c$:

1. First arrange in descending order.
2. Use a trial-and-error procedure that looks for factors of c whose sum is b.

- If c is positive, then the signs of the factors are the same as the sign of b.
- If c is negative, then one factor is positive and the other is negative. (If the sum of the two factors is the opposite of b, changing the signs of each factor will give the desired factors whose sum is b.)

3. Check your result by multiplying.

Thus the factorization is

$$
(x+3)(x+5), \text { or }(x+5)(x+3)
$$

by the commutative law of multiplication. In general,

$$
(x+p)(x+q)=x^{2}+(p+q) x+p q
$$

To factor, we can use this equation in reverse.

Factoring Trinomials with a =1

Find the two numbers that will make these equations true.

Put the two numbers in the expression.

$$
x^{2}+b x+c
$$

$$
x^{2}+2 x-8
$$

$$
\square \times \square=c
$$

$$
\square+\square=b
$$

$$
(x+\square)(x+\square)
$$

$$
4 \times-2=-8
$$

$$
4+-2=2
$$

$$
(x+4)(x+\boxed{-2})
$$

$x^{2}-5 x-24$

 - $6 \cdot 4$$x^{2}-5 x-24$ $(x-8)(x+3)$

Factor Trinomial with Negative Leading Coefficient

When the leading coefficient of a polynomial is negative, we can factor out a common factor with a negative coefficient.

Examples:

$$
\begin{array}{ll}
-5 x^{2}+x+4 & -3 x^{3}+12 x^{2}+15 x \\
=-\left(5 x^{2}-x-4\right) & =-3 x\left(x^{2}-4 x-5\right) \\
=-\left(5 x^{2}-5 x+4 x-4\right) & =-3 x\left(x^{2}-5 x+x-\right. \\
=-(5 x(x-1)+4(x-1)) & =-3 x(x(x-5)+(x \\
=-(5 x+4)(\mathrm{x}-1) & =-3 x(x+1)(x-5)
\end{array}
$$

Perfect Square Trinomials (PST)

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)(a+b)=(a+b)^{2} \\
& a^{2}-2 a b+b^{2}=(a-b)(a-b)=(a-b)^{2}
\end{aligned}
$$

Examples:

$$
\begin{array}{ll}
x^{2}+12 x+36 & 9 x^{2}-12 x+4 \\
=x^{2}+(2)(6) x+6^{2} & =(3 x)^{2}-(3)(2) x+2^{2} \\
=(x+6)^{2} & =(3 x-2)^{2}
\end{array}
$$

There are many methods for factoring a trinomial where $a \neq 1$ 1. The FOIL method is the same as a 'Guess and Check' Method

THE FOIL METHOD

To factor trinomials of the type $a x^{2}+b x+c, a \neq 1$, using the FOIL method:

1. Factor out the largest common factor.
2. Find two First terms whose product is $a x^{2}$:

3. Find two Last terms whose product is c :

$$
(x+\square)(x+\square)=a x^{2}+b x+c .
$$

4. Repeat steps (2) and (3) until a combination is found for which the sum of the Outside and Inside products is $b x$:

5. Always check by multiplying.

TIPS FOR FACTORING $a x^{2}+b x+c_{1}$ $a \neq 1$, USING THE FOIL METHOD

1. If the largest common factor has been factored out of the original trinomial, then no binomial factor can have a common factor (other than 1 or -1).
2. a) If the signs of all the terms are positive, then the signs of all the terms of the binomial factors are positive.
b) If a and c are positive and b is negative, then the signs of the factors of c are negative.
c) If a is positive and c is negative, then the factors of c will have opposite signs.
3. Be systematic about your trials. Keep track of those you have tried and those you have not.
4. Changing the signs of the factors of c will change the sign of the middle term.

1. The AC Method here is the Decomposition method; also knows as the Factor by Grouping method.

THE $a c$-METHOD

To factor $a x^{2}+b x+c, a \neq 1$, using the $a c$-method:

1. Factor out the largest common factor.
2. Multiply the leading coefficient a and the constant c.
3. Try to factor the product $a c$ so that the sum of the factors is b. That is, find integers p and q such that $p q=a c$ and $p+q=b$.
4. Split the middle term. That is, write it as a sum using the factors found in step (3).
5. Factor by grouping.
6. Always check by multiplying.

Factoring Polynomials:

Type 2:

Quadratic Trinomials with a Leading coefficient $\neq 1$

a) Factoring by Decomposition

1. Multiply a and c
2. Look for two numbers that multiply to that product and add to b
3. Break down the middle term into two terms using those two numbers
4. Find the common factor for the first pair and factor it out $\&$ then find the common factor for the second pair and factor it out.
5. From the two new terms, place the common factor in one bracket and the factored out factors in the other bracket.

$$
a \times c=-20
$$

The 2 nos. are $-20 \& 1$

$$
5 x^{2}-19 x-4
$$

$$
=5 x^{2}-20 x+1 x-4
$$

$$
=5 x(x-4)+1(x-4)
$$

$$
=(x-4)(5 x+1)
$$

Factor by Grouping

Example:

$$
\begin{aligned}
& 6 x^{2}+15 x-21 \\
& =3\left(2 x^{2}+5 x-7\right) \quad \text { 1. Factor out Greatest Common Factor } \\
& \text { Find two numbers when multiplied } \\
& \text { get }-14 \text { and when added get }+5 \\
& +7 \times-2=-14 \\
& +7+-2=+5 \\
& \text { 2. Split the middle term into two } \\
& \text { terms. } \\
& \text { 3. Rewrite the pairs of terms and } \\
& \text { take out the common factor. }
\end{aligned}
$$

Solving General Trinomials - the Decomposition Methadlaye

3. This is the Short-cut Method I like to use.

$$
\begin{gathered}
\text { Decomposition } \\
3 x^{2}-19 x-14 \\
\mathrm{~A}=\mathbf{3}, \mathrm{C}=\underset{\mathbf{4 2}}{-14} \mathbf{A C}=-
\end{gathered}
$$

Two numbers that multiply to -42 but add to -19

These numbers are: -21 and +2

Replace the middle (b) term with these two factors written with an x

$$
3 x^{2}-21 x+2 x-14
$$

Split it in half and factor each half

$$
\begin{aligned}
& 3 x^{2}-21 x \mid+2 x-14 \\
& 3 x(x-7)+2(x-7)
\end{aligned}
$$

Place each term in front of the brackets in its own bracket and write the other common binomial in one bracket.

$$
(3 x+2)(x-7)
$$

Short-cut Factoring

$$
3 x^{2}-19 x-14
$$

$\mathrm{A}=3, \mathrm{C}=-14 \rightarrow \mathrm{AC}=-42$
Two numbers that multiply to -42 but add to -19

These numbers are: -21 and +2

Place the first term of the trinomial without the squared in the first spot of each factored bracket
$(3 x \quad)(3 x \quad)$

Place the two factors (-21 \& +2) in the brackets to form the binomials

$$
(3 x-21)(3 x+2)
$$

Reduce the terms in the binomials like you would fractions

$$
\begin{aligned}
& \left({ }_{1} \not p x-2 \not d_{7}\right)(3 x+2) \\
& =(x-7)(3 x+2)
\end{aligned}
$$

Done!
\&actoring Review \& Practice

Review of Algebra and Factoring

Common Factoring

Determine the greatest common factor by checking what the largest term divisible by all terms is (numbers and variables).

Ex. $2 x^{2}-6 x \rightarrow 2 x(x-3)$
Complete the following for practice:

FActoring review.

a) | \downarrow |
| :--- |
| $3 x^{3}$ |
| x^{2} |
| $-9 x^{2}$ |

$G^{3 x^{2}} C F=3 x^{2}(x-3)$
b) $\begin{gathered}-8 x^{3} \\ \uparrow \uparrow+2 x^{2}-22 x \\ \frac{\uparrow \uparrow}{-2 x} \frac{\uparrow \uparrow}{-2 x}\end{gathered}$

$$
=-2 x\left(4 x^{2}-x+11\right)
$$

Binomial Factoring with a Difference of Squares

When the 2 terms of the binomial are perfect squares and there is a subtraction between them, you can use this method for factoring. Form must be $\left(a^{2}-b^{2}\right)$.

Ex. $x^{2}-9 \rightarrow(x+3)(x-3) \quad 4 x^{2}-25 y^{2} \rightarrow(2 x+5 y)(2 x-5 y)$
Here, you put the square root of x and the square root of 9 in each bracket with different signs between them: this is the difference of squares factoring.

NOTE: $x^{2}+9$ is a sum of squares and cannot be factored.
Complete the following:
a) $a^{2}-16$
b) $144-9 y^{2}$
c) $\sqrt{36 x^{2}}-\sqrt{49}$
Difference
$(6 x-7)(6 x+7)$

Trinomial Factoring

A trinomial is in the form: $a x^{2}+b x+c$. There are different methods for trinomial factoring; including decomposition, guess and check, short-cut factoring, box method. I will show you decomposition and short-cut factoring (I usually do short-cut factoring in class).

When a trinomial has a leading coefficient of 1 , the method is simple:

$$
x^{2}-4 x-5 \rightarrow \mathbf{C}=\mathbf{- 5} .
$$

Find two numbers that multiply to -5 but add to -4 . Here the two numbers or factors are -5 and +1 . Place these two factors in the brackets with x and you're done.
$x^{2}-4 x-5=(x-5)(x+1)$
When the leading coefficient is not 1 , use one of the following methods.

Decomposition	Short-cut Factoring
$3 x^{2}-19 x-14$	$3 x^{2}-19 x-14$
$\mathrm{A}=3, \mathrm{C}=\underset{42}{-14} \rightarrow \mathrm{AC}=-$	$\mathrm{A}=3, \mathrm{C}=-14 \rightarrow \mathrm{AC}=-42$
Two numbers that multiply to $\mathbf{- 4 2}$ but add to - 19	Two numbers that multiply to -42 but add to -19
These numbers are: -21 and +2	These numbers are: -21 and +2
Replace the middle (b) term with these two factors written with an x	Place the first term of the trinomial without the squared in the first spot of each factored bracket

$$
3 x^{2}-21 x+2 x-14
$$

Split it in half and factor each half
$3 x^{2}-21 x \mid+2 x-14$
$3 x(x-7)+2(x-7)$
Place each term in front of the brackets in its own bracket and write the other common binomial in one bracket.

$$
(3 x+2)(x-7)
$$

Done!
Another Short-cut Factoring
$3 x^{2}-19 x-14$
$\mathbf{A}=\mathbf{3}, \mathbf{C}=\mathbf{- 1 4} \boldsymbol{\rightarrow} \mathbf{A C}=\mathbf{- 4 2}$

Two numbers that multiply to -42 but add to -19

These numbers are: -21 and +2
Rewrite the trinomial with the AC as the last term

$$
x^{2}-19 x-42
$$

Place the two factors $(-21 \&+2)$ in the brackets to form the binomials

$$
(x-21)(x+2)
$$

Divide and reduce the constant in each bracket by the A from original trinomial
$\left(x-\frac{21}{3}\right)\left(x+\frac{2}{3}\right)=(x-7)\left(x+\frac{2}{3}\right)$
If there is still a denominator, write that number in front of the x in the same brackets to get final factored form.
$(x-7)\left(x+\frac{2}{3}\right)=(x-7)(3 x+2)$
Box Method
$3 x^{2}-19 x-14$
$\mathbf{A}=\mathbf{3}, \mathbf{C}=\underset{\mathbf{- 1 4}}{\mathbf{4 2}} \boldsymbol{\rightarrow} \mathbf{A C}=-$

Two numbers that multiply to $\mathbf{- 4 2}$ but add to - $\mathbf{- 1 9}$
These numbers are: -21 and +2

Place the first and last term in the box in the first and last spot

Place the two factors with x in the second and third box

$3 x^{2}$	$-21 x$
$2 x$	-14

Common factor each row and each column and collect the factors in two brackets for final factored form.

$$
\begin{array}{|l|l|l}
\hline 3 x^{2} & -21 x & 3 x \\
\cline { 1 - 2 } 2 x & -14 & 2 \\
\cline { 1 - 2 } x & -7 & \\
\hline
\end{array}
$$

$$
(3 x+2)(x-7)
$$

Complete the following using a method of your choice:

d) $2 x^{2}-3 x-2$

To solve, you make each binomial bracket equal zero and solve for x.
Solving the example from above:
$(3 x+2)(x-7)$
$3 x+2=0 \quad x-7=0$
$3 x=-2$
$x=7$
$x=-\frac{2}{3}$

Factoring Trinomials $(\mathrm{a}=1)$
Date
Period
Factor each completely.

1) $b^{2}+8 b+7$
2) $n^{2}-11 n+10$
3) $m^{2}+m-90$
4) $n^{2}+4 n-12$
5) $n^{2}-10 n+9$
6) $b^{2}+16 b+64$
7) $m^{2}+2 m-24$
8) $x^{2}-4 x+24$
9) $k^{2}-13 k+40$
10) $a^{2}+11 a+18$
11) $n^{2}-n-56$
12) $n^{2}-5 n+6$
13) $b^{2}-6 b+8$
14) $n^{2}+6 n+8$
15) $2 n^{2}+6 n-108$
16) $5 n^{2}+10 n+20$
17) $2 k^{2}+22 k+60$
18) $p^{2}+11 p+10$
19) $5 v^{2}-30 v+40$
20) $2 p^{2}+2 p-4$
21) $4 v^{2}-4 v-8$
22) $x^{2}-15 x+50$
23) $v^{2}-7 v+10$
24) $p^{2}+3 p-18$
25) $6 v^{2}+66 v+60$

Kuta Software - Infinite Algebra 1
Name
Factoring Trinomials $(\mathrm{a}=1)$

Factor each completely.

1) $b^{2}+8 b+7$

$$
(b+7)(b+1)
$$

2) $n^{2}-11 n+10$

$$
(n-10)(n-1)
$$

3) $m^{2}+m-90$

$$
(m-9)(m+10)
$$

4) $n^{2}+4 n-12$

$$
(n-2)(n+6)
$$

5) $n^{2}-10 n+9$

$$
(n-1)(n-9)
$$

7) $m^{2}+2 m-24$
$(m+6)(m-4)$
8) $x^{2}-4 x+24$

Not factorable

$$
\text { 9) } \begin{aligned}
& k^{2}-13 k+40 \\
& (k-5)(k-8)
\end{aligned}
$$

10) $a^{2}+11 a+18$

$$
(a+2)(a+9)
$$

11) $n^{2}-n-56$

$$
(n+7)(n-8)
$$

12) $n^{2}-5 n+6$
$(n-2)(n-3)$
13) $b^{2}-6 b+8$

$$
(b-4)(b-2)
$$

15) $2 n^{2}+6 n-108$
$2(n+9)(n-6)$
16) $2 k^{2}+22 k+60$

$$
2(k+5)(k+6)
$$

$$
\text { 19) } \begin{aligned}
& p^{2}+11 p+10 \\
& (p+10)(p+1)
\end{aligned}
$$

$$
\text { 21) } \begin{aligned}
& 2 p^{2}+2 p-4 \\
& 2(p-1)(p+2)
\end{aligned}
$$

$$
\text { 23) } \begin{aligned}
& x^{2}-15 x+50 \\
& (x-10)(x-5)
\end{aligned}
$$

$$
\text { 25) } \begin{aligned}
& p^{2}+3 p-18 \\
& (p-3)(p+6)
\end{aligned}
$$

14) $n^{2}+6 n+8$
$(n+2)(n+4)$
15) $5 n^{2}+10 n+20$
$5\left(n^{2}+2 n+4\right)$
16) $a^{2}-a-90$
$(a-10)(a+9)$
17) $5 v^{2}-30 v+40$
$5(v-2)(v-4)$
18) $4 v^{2}-4 v-8$
$4(v+1)(v-2)$
19) $v^{2}-7 v+10$
$(v-5)(v-2)$
20) $6 v^{2}+66 v+60$
$6(v+10)(v+1)$

Create your own worksheets like this one with Infinite Algebra 1. Free trial available at KutaSoftware.com

Factoring Trinomials (a>1)
Date
Period
Factor each completely.

1) $3 p^{2}-2 p-5$
2) $2 n^{2}+3 n-9$
3) $3 n^{2}-8 n+4$
4) $5 n^{2}+19 n+12$
5) $2 v^{2}+11 v+5$
6) $2 n^{2}+5 n+2$
7) $7 a^{2}+53 a+28$
8) $9 k^{2}+66 k+21$

Kuta Software - Infinite Algebra 1
Name
Factoring Trinomials (a>1)
Factor each completely.

1) $3 p^{2}-2 p-5$
$(3 p-5)(p+1)$
2) $2 n^{2}+3 n-9$ $(2 n-3)(n+3)$
3) $3 n^{2}-8 n+4$

$$
(3 n-2)(n-2)
$$

4) $5 n^{2}+19 n+12$

$$
(5 n+4)(n+3)
$$

$$
\text { 5) } \begin{aligned}
2 v^{2} & +11 v+5 \\
& (2 v+1)(v+5)
\end{aligned}
$$

7) $7 a^{2}+53 a+28$
$(7 a+4)(a+7)$
8) $2 n^{2}+5 n+2$

$$
(2 n+1)(n+2)
$$

8) $9 k^{2}+66 k+21$
$3(3 k+1)(k+7)$

$$
\text { 9) } \begin{aligned}
& 15 n^{2}-27 n-6 \\
& 3(5 n+1)(n-2)
\end{aligned}
$$

10) $5 x^{2}-18 x+9$
$(5 x-3)(x-3)$
11) $4 n^{2}-15 n-25$
$(n-5)(4 n+5)$
12) $4 x^{2}-35 x+49$
$(x-7)(4 x-7)$
13) $4 n^{2}-17 n+4$

$$
(n-4)(4 n-1)
$$

14) $6 x^{2}+7 x-49$
$(3 x-7)(2 x+7)$
15) $6 x^{2}+37 x+6$
$(x+6)(6 x+1)$
16) $-6 a^{2}-25 a-25$
$-(2 a+5)(3 a+5)$

$$
\text { 17) } \begin{aligned}
& 6 n^{2}+5 n-6 \\
& (2 n+3)(3 n-2)
\end{aligned}
$$

18) $16 b^{2}+60 b-100$
$4(b+5)(4 b-5)$

Create your own worksheets like this one with Infinite Algebra 1. Free trial available at KutaSoftware.com

The factor theorem is when the remainder is zero

Remainder Theorem vs Factor Theorem

Remainder Theorem
If a polynomial $f(x)$ is divided by $(x-a)$, the remainder is $f(a)$. $f(x)=(x-a) Q(x)+f(a)$

Factor Theorem

A polynomial $f(x)$ has a factor $(x-a)$ if and only if $f(a)=0$.

Remainder Theorem	Factor Theorem

The remainder theorem states that The factor theorem states that the remainder when $p(x)$ is divided $(x-a)$ is a factor of $p(x)$ if and only by $(x-a)$ is $p(a)$. if $f(a)=0$.

It is used to decide whether a linear polynomial is a factor of the given polynomial or not.

The remainder and factor theorems together are used to solve/factorize polynomials.

Determining Potential Integral Zeros List the potential integral zeros of $f(x)$

$$
f(x)=x^{3}+2 x^{2}-11 x+20
$$

Factors of the constant term: $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$
Potential Zeros: $\quad \pm\{1,2,3,4,5,10,20\}$

Actual Zeros: $\quad P(-5)=0$
Use the Factor Theorem: $f(a)=0$
One Factor of the Polynomial is $(x+5)$
The graph of the function will have an \mathbf{x}-intercept at $\mathbf{- 5}$.

Potential Integral Zeros

List the possible integral zeros of $f(x)$.

$$
f(x)=x^{3}+9 x^{2}+23 x+15
$$

Factors of the constant term: $\pm 1, \pm 3, \pm 5, \pm 15$
Potential zeros: $\pm\{1,3,5,15\}$
Actual Zeros: $\quad-5,-3,-1$
Use the Factor Theorem: $f(a)=0$
Factors of the Polynomial: $(x+5)(x+3)(x+1)$
The graph of the function will have x -intercepts at $-5,-3$ and -1 .

When a polynomial cannot be factored using grouping, you can use the factor theorem to find a factor, then use synthetic division until you get to a quadratic which you can finish with quadratic factoring.

Applying the Factor Theorem

Factor $P(x)=x^{3}-9 x^{2}+23 x-15$.
Potential Zeros $\left\{{ }^{2}, \pm 3, \pm 5, \pm 15\right\}$
Try $P(1)$
$\mathrm{Try}(1)=(1)^{3}-9(1)^{2}+23(1)-15$

$$
\begin{aligned}
-1 & \begin{array}{rrrrr}
1 & -9 & 23 & -15 & \\
& & -1 & 8 & -15 \\
\hline & 1 & -8 & 15 & 0
\end{array}
\end{aligned}
$$

$(x-1)\left(x^{2}-8 x+15\right)$
$(x-1)(x-3)(x-5)$

Since $P(1)=0$, then $(x-1)$ is a factor of the polynomial.

Therefore, $P(x)=(x-1)(x-3)(x-5)$.

Applying the Factor Theorem

Factor $P(x)=x^{4}-4 x^{3}+5 x^{2}+2 x-8$.
Potential Zeros $\left\{t_{1}, 2_{2}, \pm 4, \pm 8\right\}$
Try P(-1)

$$
\begin{aligned}
P(-1) & =(-1)^{4}-4(-1)^{3}+5(-1)^{2}+2(-1)-8 & & \text { Since } P(-1)=0 \text {, then } \\
& =1+4+5-1-8 & & |v+1| \text { ic a fartor }
\end{aligned}
$$

$P(-1)=(-1)^{4}-4(-1)^{3}+5(-1)^{2}+2(-1)-8$
$=1+4+5-2-8$
$=0$

Since $P(-1)=0$, then $(x+1)$ is a factor.
$(x-2)$ is a factor.

Therefore, $P(x)=(x+1)(x-2)\left(x^{2}-3 x+4\right)$.

Practice Word Problems

Your Turn

Three consecutive integers have a product of -210 .
a) Write a polynomial function to model this situation.
b) What are the three integers?
12. The competition swimming pool at Saanich Commonwealth Place is in the shape of a rectangular prism and has a volume of $2100 \mathrm{~m}^{3}$. The dimensions of the pool are x metres deep by $25 x$ metres long by $10 x+1$ metres wide. What are the actual dimensions of the pool?
14. Determine the equation with least degree for each polynomial function. Sketch a graph of each.
a) a cubic function with zeros -3 (multiplicity 2) and 2 and y-intercept -18
b) a quintic function with
zeros -1 (multiplicity 3) and 2
(multiplicity 2) and y-intercept 4
c) a quartic function with a negative
leading coefficient, zeros -2
(multiplicity 2) and 3 (multiplicity 2),
and a constant term of -6

3.5 Solving Polynomial Equations \& Word Problems

The Zeros or Roots of a Polynomial Function

Graphically: the real zeros or real roots of a polynomial function are the x-intercepts of the graph.

Rational Zeros Theorem: If a polynomial function has rational zeros, they will be a ratio of the factors of the constant to the factors of the leading coefficient.

$$
\begin{aligned}
& \text { Example: } f(x)=2 x^{3}-9 x^{2}+7 x+6 \\
& 6: \pm 1, \pm 2, \pm 3, \pm 6 \\
& 2: \pm 1, \pm 2
\end{aligned}
$$

