Plan For Todays

1. Questions from Chapter 3 or 4 ?
$>$ Do 5.1 Check-in Quiz
2. Start Chapter 5: Exponents \& Logarithms
$>$ 5.1: Exponents
> 5.2s Logarithmic Functions and Graphs
> 5.3s Properties of Logarithms
$>$ 5.4: Exponential and Logarithmic Equations
$>$ 5.5: Applications of Exponential and Log Equations

$\log _{a}\left(\frac{m}{n}\right)=\log _{2} m-\log _{a} n \quad \log _{a} n=\frac{1}{m} \log _{, n} n$
$\log _{a} b \cdot \log _{b} a=1 \quad a^{\log _{8} m}=m$

UNIT 2 REWRTTE AFTER CLASS TODAY

Plan Going Forwards

1. Finish going through 5.2-5.3 and chapter practice questions in workbook and start working on review handout.

- CHECR -NN QUIZ ON 5.2-5.3 ON THURSDAT. FEB. 29TH

2. We will finish in Chapter 5 on Tuesday.

- CHAPTER 5 PROJECT (PART ABB) DUE THURSDAY, MAR. TVH
- PART A IS UN DESMOS: http://tinyurl.com/PC12-Feb2024-Ch5PartA
- Part b is on handout
- GHAPTER 5 TEST ON THURSDAY. MAR. 工TH

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at anurita.weebly.com after class. Anurita Dhiman = adhiman@sd35.bc.ca

Feb. 27, 2024 Name: \qquad TOTAL $=$ \qquad / 8 marks

Check-in Quiz Section 5.1: Solving \& Transformations of

 Exponential Functions Complete the following questions SHOWING ALL WORK and steps where applicable.1. Simplify the following exponential expression:
a) $\frac{125^{3 x-1}}{25^{x+4}} \frac{\left(5^{3}\right)^{3 x-1}}{\left(5^{2}\right)^{3+4}}$
b) $\frac{\left(\frac{1}{3}\right)^{5 x}(27)^{x-2}}{\left(\frac{1}{9}\right)^{1-x}}=\frac{\left(3^{-1}\right)^{5 x}\left(3^{3}\right)^{x-2}}{\left(3^{-2}\right)^{1-x}}$

$$
\begin{aligned}
& =\frac{5^{9 x-3}}{5^{2 x+8}} \\
& =5^{9 x-3-(2 x+8)} \\
& =5^{9 x-3-2 x-8} \rightarrow 5^{7 x-11}
\end{aligned}
$$

$$
=\frac{(3)^{\left(-5 x+(3)^{3 x-6)}\right.}}{3^{-2+2 x}}
$$

2. Solve the following exponential equation:
$=\frac{3^{-2 x-6}}{3^{-2+2 x}} \rightarrow 3^{-2 x-6-(-2+2 x)}$
a) $4^{x}(16)^{x+3}=\left(\frac{1}{64}\right)^{-2 x-1}$
b) $36^{x-7}=\left(\frac{1}{6}\right) \cdot(6)^{-2 x-1}$

$$
\begin{aligned}
& 4^{x}\left(4^{2}\right)^{x+3}=\left(4^{-3}\right)^{-2 x-1} \\
& 4^{x+2 x+6}=4^{6 x+3}
\end{aligned}
$$

$$
\left(6^{2}\right)^{x^{-7}}=(6)^{-1} \cdot(6)^{-2 x-1}
$$

$$
6^{2 x-14}=-6^{-2 x-2}
$$

$$
4^{3 x+6}=4^{6 x+3}
$$

$$
\begin{aligned}
& 3 x+6=6 x+3 \\
& -6 x
\end{aligned}=-6
$$

2 marks $=3^{-2 x-6+2-2 x}$
$=3^{-4 x-4}$
if the bases
are equal then the exponents are equal

$$
-3 x=-3 / 1 / 3
$$

$$
x=1
$$

3. Graph the following function and answer the questions below:

$$
y=\frac{1}{2}(2)^{x+\frac{\downarrow}{2}}-5 \leftarrow
$$

a) Describe/list the transformations on the base function.

$$
\begin{aligned}
& \begin{array}{l}
\text { original } \\
\text { base function } \\
y=2^{x}
\end{array} \quad V C q^{\frac{1}{2}} \text {, } 3 \text { left, dan } 5
\end{aligned}
$$

b) Sketch the graph of the transformed function. Show mapping notation.
(1 mark)
(2 marks)

c) Determine the domain and range of the transformed function and the equation of the asymptote.

$$
\begin{align*}
& \{x \mid x \in R\} \tag{1mark}\\
& \{y \mid y>-5, y \in R\}
\end{align*}
$$

$$
y=-5
$$

Page 2 of $\mathbf{2}$

5.1 Graphing Summary.

Base Function

$$
y=c^{x}
$$

$$
\longrightarrow \begin{aligned}
& \text { Transformed } \\
& y=a(c){ }_{l}^{b(x-h)}+k \quad \begin{array}{l}
h=r i g h t / \text { lett } \\
(x+2) \\
(x-2) \\
\text { left }
\end{array} \\
& \text { aright }
\end{aligned}
$$

ax: $y=\left(\frac{1}{2}\right)^{x} \longrightarrow y=-3\left(\frac{1}{2}\right)^{-2(x-5)}+10$

(1)

$$
\begin{aligned}
& \text { LE \& } 3+\text { ref. in } x \text {-axis } \\
& H C \text { of } \frac{1}{2}+\text { ref. in } y \text {-axis. }
\end{aligned}
$$

(2) 5 right

10 up. $\longleftarrow H A \Rightarrow y=10$
Mapping.

| $-\frac{1}{2} x$ | $-3 y$ | |
| :--- | :--- | :--- | :--- |
| | | |
| | | $\frac{-\frac{1}{2} x+5}{}-3 y+10$ |
| | | |

$$
\begin{array}{ll}
\begin{array}{l}
y=2^{x}
\end{array} & \text { vs }
\end{array} \underbrace{\text { base }=c>1}_{\begin{array}{c}
\text { granth. } \\
\text { (increasing) } \\
\text { decay } \\
\text { (decreasing) }
\end{array}} \quad \begin{aligned}
& \text { base } \left.0<c<1 \frac{1}{2}\right)^{x} \\
& \text { base }=b
\end{aligned}
$$

p. 2075.2 Logs.

$$
\begin{aligned}
& y=b^{x} \xrightarrow[\substack{(\text { switch } \\
x+y)}]{\text { inverse }} \quad x=b^{y} \\
& \text { (experiential } \\
& \downarrow \text { solve for } y \text {. } \\
& \Rightarrow \log =\text { exponent } \\
& \log _{b} x=y \\
& y=\log _{b} x \quad \log \text { base } b \text { of } x
\end{aligned}
$$

summary

$$
y=b^{x} \longleftarrow \text { inverse } \longrightarrow y=\log _{b} x
$$

summary

$$
y=b^{x} \longleftarrow \text { inverse } \longrightarrow y=\log _{b} x
$$

p. 208

$$
y=2^{x}
$$

$$
\begin{array}{c|c}
x & y \\
\hline-1 & \frac{1}{2} \\
0 & 1 \\
1 & 2
\end{array}
$$

$$
\left.\begin{aligned}
& y=\log _{2} x \\
& x
\end{aligned} \right\rvert\, y
$$

Log graph transformations:
Base function
Transformed
(1) base points on $y=\log _{b} x$ are the
(2) apply transformations inverse of $y=b^{x}$ + graph.
ex: $\quad y=-2 \log _{2}\left(\frac{1}{2}(x+5)\right)-3$
(1) HE 2
$V E y^{2}+\operatorname{cefin} x$ axis
$y=\log _{2} x$ inverse of $y=2^{x}$
(2) 5 left 3 dow s.

Exponential Equation inverse of exprential logarithmic equation

ex: 2 b)

$$
\begin{aligned}
& \log _{3} 3 x=D \\
& \frac{\log _{3} x}{}
\end{aligned}
$$

result (argument)
switching b/w log texporent form helps to simplify equation or expressions
ex: 3
a) $\log _{4} 8=?$

$$
2 x=3
$$

Restrictions (Domain) exist in \log equations

$$
x=\frac{3}{2}
$$

$$
y=\log _{b} x \quad x>0
$$

no restriction.

$$
5.2 \text { p.211 } 1-5 \text { practice. }
$$

Graphs and Transformations of Exponential Functions

https://www.varsitytutors.com/hotmath/hotmath help/topics/graphing-exponential-functions

A simple exponential function to graph is $y=2^{x}$

x	-3	-2	-1	0	1	2	3
$y=2^{x}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8

Changing the base changes the shape of the graph.

Notice that the graph has the x-axis as an asymptote on the left, and increases very fast on the right.

[^0]

The x-axis is an asymptote.

The graph below shows the exponential decay function, $g(x)=\left(\frac{1}{2}\right)^{x}$.

The x-axis is an asymptote

The domain of $g(x)=\left(\frac{1}{2}\right)^{2}$ is all real numbers, the range is $(0, \infty)$, and the portantal asymptote is $y=$

Exponential Growth and Decay Functions

An exponential function f is given by

$$
f(x)=b^{x}
$$

where x is any real number, $\mathrm{b}>0$, and $\mathrm{b} \neq 1$.

Replacing x with $x+h$ translates the graph h units to the left.

Replacing y with $y-k$ (which is the same as adding k to the right side) translates the graph k units up.

A GENERAL NOTE: CHARACTERISTICS OF THE GRAPH OF THE PARENT FUNCTION $f(x)=b^{x}$

An exponential function with the form $f(x)=b^{x}, b>0, b \neq 1$, has these characteristics:

- one-to-one function
- horizontal asymptote: $y=0$
- domain: $(-\infty, \infty)$
- range: $(0, \infty)$
- x-intercept: none
- y-intercept: $(0,1)$
- increasing if $b>1$
- decreasing if $b<1$

HOW TO: GIVEN AN EXPONENTIAL FUNCTION OF THE FORM $f(x)=b^{x}$, GRAPH THE FUNCTION

1. Create a table of points.
2. Plot at least 3 point from the table including the y-intercept $(0,1)$.
3. Draw a smooth curve through the points.
4. State the domain, $(-\infty, \infty)$, the range, $(0, \infty)$, and the horizontal asymptote, $y=0$.

Transformation	Equation	Description	
Horizontal stretch	$g(\mathrm{x})=c^{b x}$	Horizontal stretch about the y-axis by a factor of $\frac{1}{\|b\|}$.	
Vertical stretch	$g(x)=a c^{x}$	- Vertical stretch about the x-axis by a factor of \|a	. - Multiplying y-coordintates of $f(x)=c^{x}$ by a.
Reflecting	$g(x)=-c^{x}$	- Reflects the graph of $f(x)=c^{\text {x }}$ about the \boldsymbol{x}-axis.	
	$g(x)=c^{-x}$	-Reflects the graph of $f(x)=c^{x}$ about the \boldsymbol{y}-axis.	
Vertical translation	$g(\mathrm{x})=c^{x}+k$	- Shifts the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{c}^{\mathrm{x}}$ upward k units if $\mathrm{k}>0$. - Shifts the graph of $f(x)=c^{x}$ downward k units if $\mathrm{k}<0$.	
Horizontal translation	$g(x)=c^{x-h}$	- Shifts the graph of $f(x)=c^{x}$ to the right h units if $h>0$. - Shifts the graph of $f(x)=c^{x}$ to the left h units if $h<0$.	

Transformations of Exponential Functions

Transformation	$f(x)$ Notation	Examples
Vertical translation	$f(x)+k$	$\begin{array}{ll} y=2^{x}+3 & 3 \text { units up } \\ y=2^{x}-6 & 6 \text { units down } \end{array}$
Horizontal translation	$f(x-h)$	$y=2^{x-2}$ 2 units right $y=2^{x+1}$ 1 unit left
Vertical stretch or compression	${ }^{\text {f }}(x)$	$\begin{array}{ll} y=6\left(2^{x}\right) & \text { stretch by } 6 \\ y=\frac{1}{2}\left(2^{x}\right) & \text { compression by } \frac{1}{2} \end{array}$
Horizontal stretch or compression	$f\left(\frac{1}{b} x\right)$	$\begin{array}{ll} \left.y=2^{\left(\frac{1}{5} x\right.}\right) & \text { stretch by } 5 \\ y=2^{3 x} & \text { compression by } \frac{1}{3} \end{array}$
Reflection	$\begin{aligned} & -f(x) \\ & f(-x) \end{aligned}$	$y=-2^{x}$ across x-axis $y=2^{-x}$ across y-axis

The basic properties of the graph $f(x)=b^{x}$ can be stated as follows:

Basic Properties of the Graph $f(x)=b^{x}, b>0, b \neq 0$

1. All graphs go through the point $(0,1)$, and the graph has no x-intercept.
2. The x-axis is a horizontal asymptote with equation $y=0$.
3. When $b>1, f(x)=b^{x}$ is an increasing function.
4. When $0<b<1, f(x)=b^{x}$ is a decreasing function.
```
Name :
Score :
Teacher :
Date :
```


Graphing Exponential Functions

Sketch the graph of each function.

1) $y=3 \cdot\left(\frac{1}{2}\right)^{x+3}-3$

2) $y=4 \cdot 2^{x+3}-3$

3) $y=4 \cdot 3^{x}$

Math-Aids.Com

```
Name :
Score :
Teacher :
Date :
```


Graphing Exponential Functions

Write an equation for each graph.
5)

7)

6)

8)

Math-Aids.Com

```
Name :
Score :
Teacher :
Date :
```


Graphing Exponential Functions

Sketch the graph of each function.

1) $y=3 \cdot\left(\frac{1}{2}\right)^{x+3}-3$

2) $y=4 \cdot 2^{x+3}-3$

3) $y=4 \cdot 3^{x}$

```
Name :
Score :
Teacher:
Date :
```


Graphing Exponential Functions

Write an equation for each graph.

7) $y=4 \cdot\left(\frac{1}{2}\right)^{x}$

6) $y=4 \cdot\left(\frac{1}{2}\right)^{x}$

8) $y=3 \cdot 4^{x}$

Math-Aids.Com

Logarithmic Graphs as Inverses of the Exponential Graphs

Exponential
$y=b^{x}, b>0, b \neq 1, x>0$
all go through $(0,1)$
asymptote on x-axis
$b>1$ increasing $0<b<1$ decreasing all go through $(1, b),\left(-1, \frac{1}{b}\right)$

Logarithmic
$y=\log _{b} x, b>0, b \neq 1, x>0$
all go through $(1,0)$
asymptote on y-axis
$b>1$ increasing
$0<b<1$ decreasing
all go through $(b, 1),\left(\frac{1}{b},-1\right)$

Exponential and logarithmic graphs are inverses of each other.

> ABN 63916622179 legac@legac.com.au mobile: 0405136437

LOGARITHMIC FUNCTIONS - Transformations

Transformations $y=\log x$

Transformation	$f(x)$ Notation	Examples
Horizontal Translation Graph shifts left or right.	$f(x-h)$	$\begin{aligned} & g(x)=\log (x-3) \rightarrow 3 \text { units right } \\ & g(x)=\log (x+4) \rightarrow 4 \text { units left } \end{aligned}$
Vertical Translation Graph shifts up or down.	$f(x)+k$	$\begin{aligned} & g(x)=\log x+4 \rightarrow 4 \text { units up } \\ & g(x)=\log x-5 \rightarrow 5 \text { units down } \end{aligned}$
Reflection Graph flips over x-axis.	$-f(x)$	$g(x)=-\log x \rightarrow$ over x -axis
Reflection Graph flips over y-axis.	$f(-x)$	$g(x)=\log (-x) \rightarrow$ over y-axis
Horizontal Shrink Graph shrinks toward y-axis.	$f(a x), a>1$	$g(x)=\log 2 x \rightarrow \text { shrink by } \frac{1}{2}$
Horizontal Stretch Graph stretches away from y-axis.	$f(a x), 0<a<1$	$g(x)=\log \frac{x}{2} \rightarrow$ stretch by 2
Vertical Stretch \qquad Graph stretches away from x-axis.	$a \cdot f(x), a>1$	O. Ion r - etratoh hue?

```
Graph stretches away from y-axis. }\quadf(ax),0<a<
onn-Non
Vertical Stretch 
Graph stretches away from x-axis. a
Vertical Shrink
Graph shrinks toward x-axis.
a\cdot f(x),0<a<1
g(x)=2\cdotlog}x->\mathrm{ stretch by 2
g(x)=\frac{1}{2}\operatorname{log}x->\mathrm{ shrink by }\frac{1}{2}
```

Vertical Stretch $g(x)=\operatorname{alog}_{b}(x), a>1$	Vertical Compression $h(x)=\frac{1}{a} \log _{b}(x), a>1$
 -The asymptote remains $x=0$. -The x-intercept remains $(1,0)$. -The domain remains $(0, \infty)$. -The range remains $(-\infty, \infty)$.	 -The asymptote remains $x=0$. -The x-intercept remains $(1,0)$. -The domain remains $(0, \infty)$. -The range remains $(-\infty, \infty)$.

| Reflection about the x-axis
 $g(x)=\log _{b}(x), b>1$ | Reflection about the y-axis
 $h(x)=\log _{b}(-x), b>1$ |
| :--- | :--- | :--- |

Log Graphs Practice
Name:
Teacher : Score :
Date :

Graphing Logarithms

Give the domain and range of each function, then graph.

1) $y=\log _{9}(x+4)+3$

2) $y=\log _{7}(x-4)-2$

3) $y=\log _{4}(x-2)-5$

Name:
Teacher :
Score :
Date :

Graphing Logarithms

Give the domain and range of each function, then graph.
5) $y=\log _{5}(4 x-5)-2$

6) $y=\log (4 x-3)-4$

7) $y=\log _{8}(2 x+5)+3$

8) $y=\log _{7}(4 x+4)-3$

Name:

Teacher :

Score :

Date :

Graphing Logarithms

Give the domain and range of each function, then graph.

1) $y=\log _{9}(x+4)+3$

Domain: $x>2$

3) $y=\log _{7}(x-4)-2$

4) $y=\log _{4}(x-2)-5$

Math-Aids.Com

```
Name :
Teacher:

\section*{Graphing Logarithms}

Give the domain and range of each function, then graph.
5) \(y=\log _{5}(4 x-5)-2 \quad\) Domain: \(x>\frac{5}{4}\)

6) \(y=\log (4 x-3)-4\)

7) \(y=\log _{8}(2 x+5)+3 \quad\) Domain: \(x>\frac{-5}{2}\)

8) \(y=\log _{7}(4 x+4)-3 \quad\) Domain: \(x>-1\)


\section*{What is a log?}

A logarithm is an exponent.
\[
\log _{b}(a)=c \Longleftrightarrow b^{c}=a
\]

\section*{Logarithmic Form Exponential Form}
\[
\log _{3} x=5 \quad \Rightarrow \quad 3^{5}=x
\]

\section*{Both forms use the same base}

The logarithm is equal to the exponent.

\section*{Changing between log and exponent form:}

Convert each to logarithmic form.
a) \(\underset{\substack{\text { an cen } \\ 2^{m}=n}}{n}\)
\(\log _{2} n=m\)
\[
\begin{aligned}
& 1 \\
& \hline
\end{aligned}
\]
b) \(10^{x-1}=1000 \rightarrow \log 1000=x-1 \quad\) P. \(263 \# 2 \#_{3}\)
c) \(\underset{x}{(x+1)} 3^{3+1} \rightarrow \log _{3}(x+1)=2+1\)

Convert each to exponential form.
a) \(\log _{2} x=3 \rightarrow x=2^{3}\)
b) \(\log _{x-1} 3=4 \longrightarrow(x-1)^{4}=3\)
c) \(\log _{x}(x+2)=2 \longrightarrow x^{2}=x+2\)

Evaluating and solving logarithms by changing to exponential form.
But there is a short-cut in some cases!

Try solving these:
a) \(\log _{x} 27=3 \rightarrow \sqrt[3]{x^{3}}=\sqrt[3]{27}\)
\[
x=3
\]

Note:
log have Extra \#4-7 p. 264
base is also restricted
b) \(\log _{2}(2 x-5)=4 \rightarrow 2 x-5=2^{4} \quad C>0, c \neq 1\)
\[
\begin{aligned}
& 2 x-5=16 \\
& \longrightarrow+5
\end{aligned}
\]
\(\frac{2 x}{2}=\frac{21}{2} \quad \&\) Restrictions
c) \(\log _{(x+1)}(2 x-1)=2\)
\[
x=\frac{21}{2}
\]
\[
2 x-5>0
\]
\[
x>\frac{5}{2}
\]
\[
\frac{(x+1)^{2}}{(x+1)(x+1)}=2 x-1
\]
\[
\begin{aligned}
x^{2}+2 x+1 & =2 x-1 \\
-2 x+1 & \longleftrightarrow
\end{aligned}
\]
\[
x^{2}+2=0
\]
\[
\sqrt{x^{2}}=\sqrt{-2}
\]
\(x=\varnothing\) undefined
\(x=\) no solution (no real roots)
- Change of Base Law \(=\log _{a} x=\frac{\log x}{\log a}\)

Try to evaluate these logs:
\[
\begin{aligned}
\log _{7}(10) & =\frac{\log (10)}{\log (7)} \\
& \approx \frac{1}{0.8451} \\
& \approx 1.183
\end{aligned}
\]
a) \(\log _{2} 64\)
b) \(\log _{4} 0.0625\)
c) \(\log _{\frac{1}{2}} 32\)
d) \(\log _{1.2} 223.87\)

Logarithms have restrictions (non-permissible values = NPVs)


Graphing a logarithmic function is the same as graphing the inverse of the exponential function with the same base.

Recall: to graph the inverse, switch the \(x\) and \(y\) for each coordinate and plot (the graph reflects over the line \(y=x\) and the domain and range also inverse)

Ex. Graph the function \(y=\log _{2} x\)
1. First determine the points on the function \(y=2^{x}\)
\begin{tabular}{|c|c|}
\hline x & y \\
\hline-2 & \(\frac{1}{4}\) \\
\hline-1 & \(\frac{1}{2}\) \\
\hline 0 & 1 \\
\hline 1 & 2 \\
\hline 2 & 4 \\
\hline
\end{tabular}
\[
\begin{aligned}
\text { Step(1) }= & \text { graph exponential } \\
& \text { function with the } \\
& \text { same base as } \log \\
& \text { function }
\end{aligned}
\]

3. Graph the points


Step (3) Graph the inverse to toget \(y=\log _{2} x\) graph.

Try graphing the following in the same steps as above:
a) \(y=\log _{3} x\)
(base 3)
b) \(y=\log _{\left(\frac{1}{2}\right)} x \quad\) (base \(\frac{1}{2}\) )

Step
\(11-0^{x}\)
Step 2
(1),\(x\) (2) inverse

Stepl
\[
y=3^{x}
\]
\[
\begin{array}{l|ll}
x & y \\
\hline-2 & \frac{1}{9} & 3^{-2} \rightarrow \frac{1}{3^{2}} \\
-1 & 1 / 3 & \\
0 & 1 & 3^{0} \rightarrow 1 \\
1 & 3 & \\
2 & 9 &
\end{array}
\]

Step 2 inverse
\[
\Rightarrow y=\log _{3} x
\]
\begin{tabular}{c|c}
\(x\) & \(y\) \\
\hline \(1 / 9\) & -2 \\
\(1 / 3\) & -1 \\
1 & 0 \\
3 & 1 \\
9 & 2 \\
asymptote \\
\(x=0\)
\end{tabular}

Steg 3 * invers asymptote

\[
\{x \mid x>0, x \in R\}
\]
\(\{y \mid y \in \mathbb{R}\}\) asynytote: \(x=0\) (VA)
(1)
\[
y=\frac{1^{x}}{}
\]
\begin{tabular}{c|cc|c}
\(x\) & \(y\) \\
\hline-3 & 8 & \(\left(\frac{1}{2}\right)^{-3}=2^{3}\) & \(x\) \\
-2 & 4 & & \(y\) \\
-1 & 2 & 4 & -2 \\
0 & 1 & 2 & -1 \\
1 & \(1 / 2\) & 1 & 0 \\
2 & \(1 / 4\) & \(1 / 2\) & 1 \\
& & \(1 / 4\) & 2
\end{tabular}
(2) inverse
\[
y=\log _{\frac{2}{2}} x
\]
(3) Graph.

\[
V A: x=0
\]
\[
\{x \mid x>0, x \in R\}
\]
\(\{y \mid y \in \mathbb{R}\}\)
a symptote \(x\)
\[
\begin{aligned}
& \text { ymptote } x=0 \\
& V A
\end{aligned}
\]```


[^0]:    The graph below shows the exponential growth function $f(x)=2^{x}$.

