Plan For Today:

1. Questions from Chapter 3 or 4?

- Do 5.1 Check-in Quiz
- 2. Start Chapter 5: Exponents & Logarithms
 - 5.1: Exponents
 - 5.2: Logarithmic Functions and Graphs
 - 5.3: Properties of Logarithms
 - 5.4: Exponential and Logarithmic Equations
 - 5.5: Applications of Exponential and Log Equations

3. Work on Practice Questions from Workbook

UNIT 2 REWRITE AFTER CLASS TODAY

Plan Going Forward:

1. Finish going through 5.2-5.3 and chapter practice questions in workbook and start working on review handout.

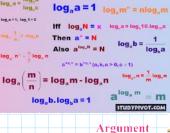
O CHECK-IN QUIZ ON 5.2-5.3 ON THURSDAY, FEB. 29TH

2. We will finish in Chapter 5 on Tuesday.

• Chapter 5 project (part A&B) due Thursday, Mar. 7th

- PART A IS IN DESMOS: <u>http://tinyurl.com/PC12-Feb2024-Ch5PartA</u>
- Part B is on Handout
- Chapter 5 test on thursday, Mar. 7th

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at <u>anurita.weebly.com</u> after class. Anurita Dhiman = adhiman@sd35.bc.ca



 $b^x = a \iff \log_b a = x$

base

 $f(x) = 100^{x}$ Y

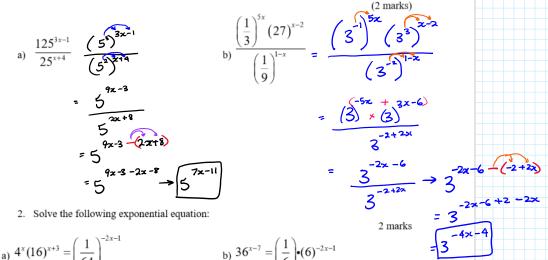
LOG RULES log_(mn) = log_ m + log_ n

Feb. 27, 2024 TOTAL = ____ / 8 marks Name:

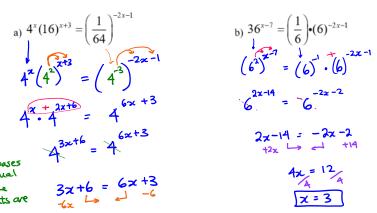
Check-in Quiz Section 5.1: Solving & Transformations of **Exponential Functions**

Complete the following questions SHOWING ALL WORK and steps where applicable.

1. Simplify the following exponential expression:



2. Solve the following exponential equation:



if the bases are equal then the exponents are

$$-3x = -3$$

 $x = 1$

Page 1 of 2

2x - 14 = -2x - 2 $+2x \mapsto = +14$

4x = 12 x = 3

3. Graph the following function and answer the questions below:

$$y = \frac{1}{2} (2)^{x+3} - 5 < <$$

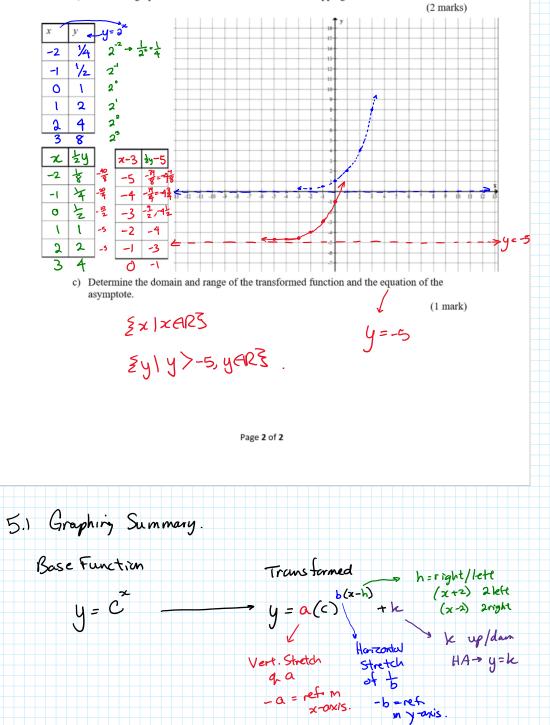
(1 mark)

<u>-2/x-5)</u>

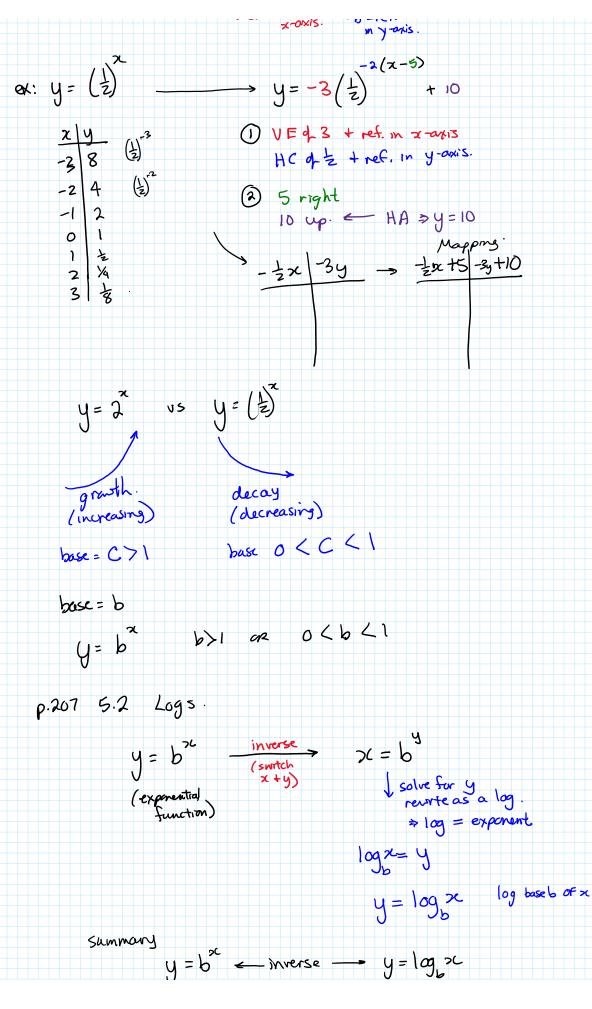
a) Describe/list the transformations on the base function.

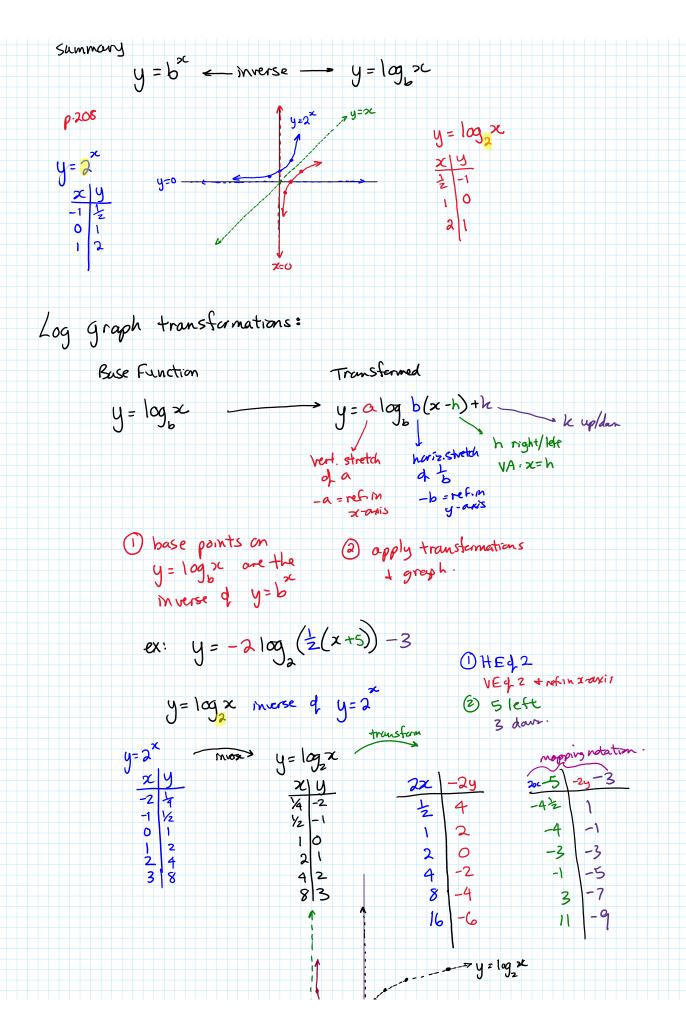
prigmal
base function
$$y = 2^{\alpha} \longrightarrow VC \neq \frac{1}{2}, 3 \text{ left, } dam 5$$

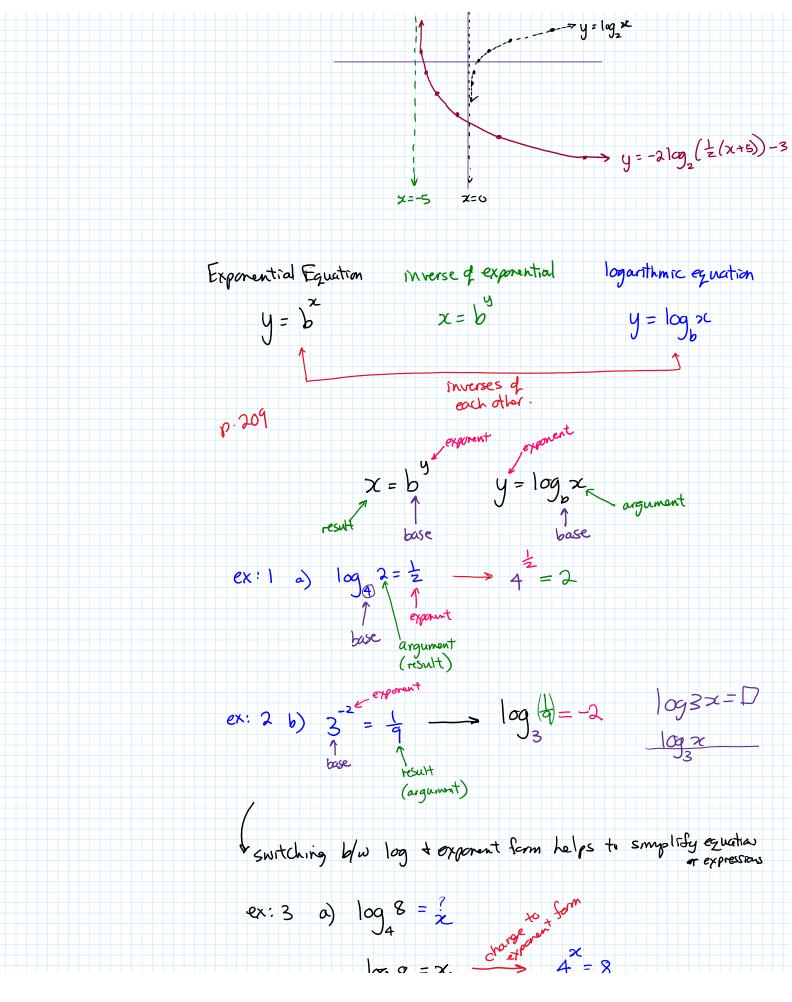
b) Sketch the graph of the transformed function. Show mapping notation.



्रू







J4 $4^{\times}=8$ $\chi^{2x} = \chi^3$ $2\chi = \frac{3}{2}$ $\chi = \frac{3}{2}$ A Restrictions (Domain) exist in log equations y = log x p x >0 no restriction

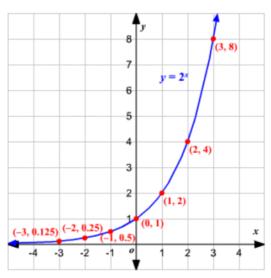
5.2 p.211 1-5 practice.

Graphs and Transformations of Exponential Functions

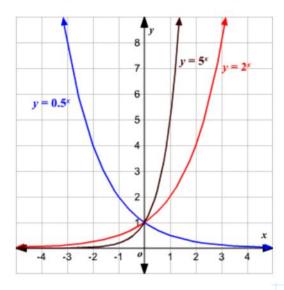
https://www.varsitytutors.com/hotmath/hotmath_help/topics/graphing-exponential-functions

A simple exponential function to graph is $y = 2^x$.

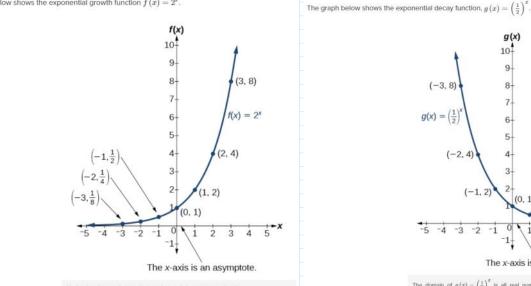
x	-3	-2	-1	0	1	2	3
$y=2^x$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8

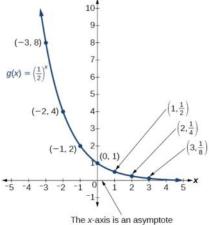


Changing the base changes the shape of the graph.

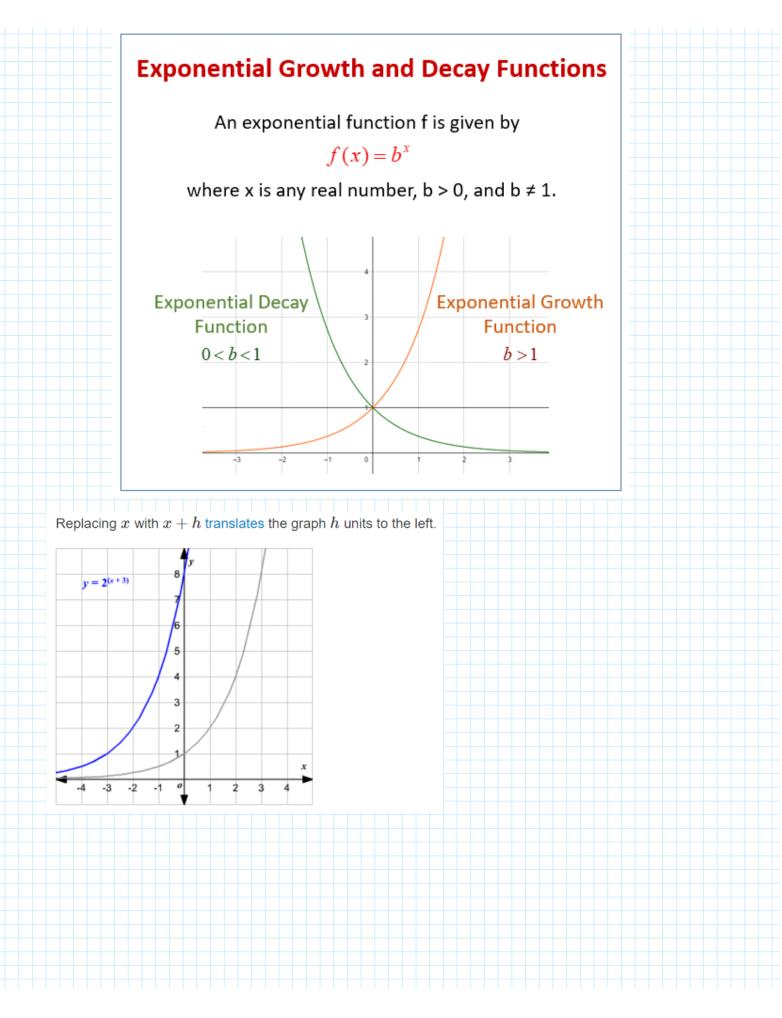


Notice that the graph has the x -axis as an asymptote on the left, and increases very fast on the right. The graph below shows the exponential growth function $f(x) = 2^x$.

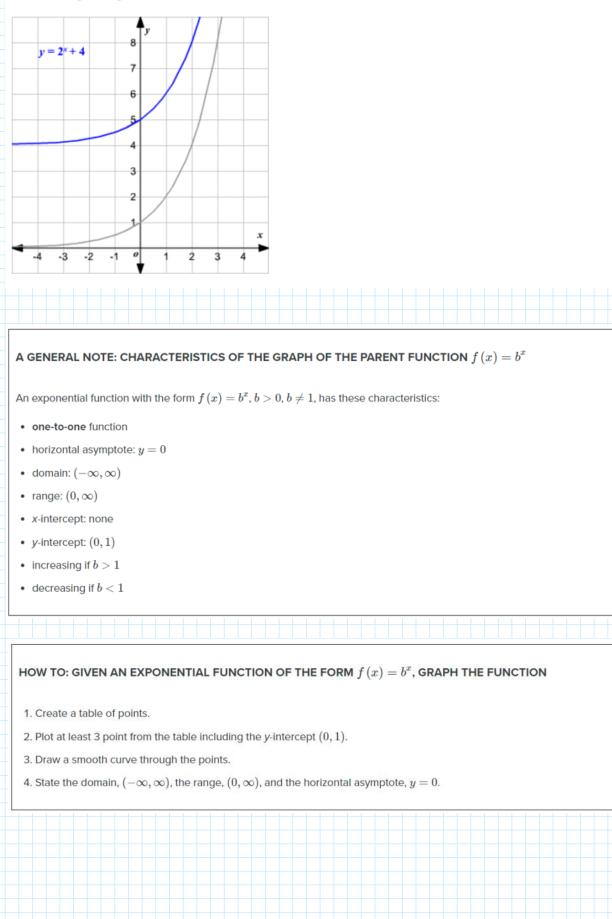




g(x)



Replacing y with y - k (which is the same as adding k to the right side) translates the graph k units up.



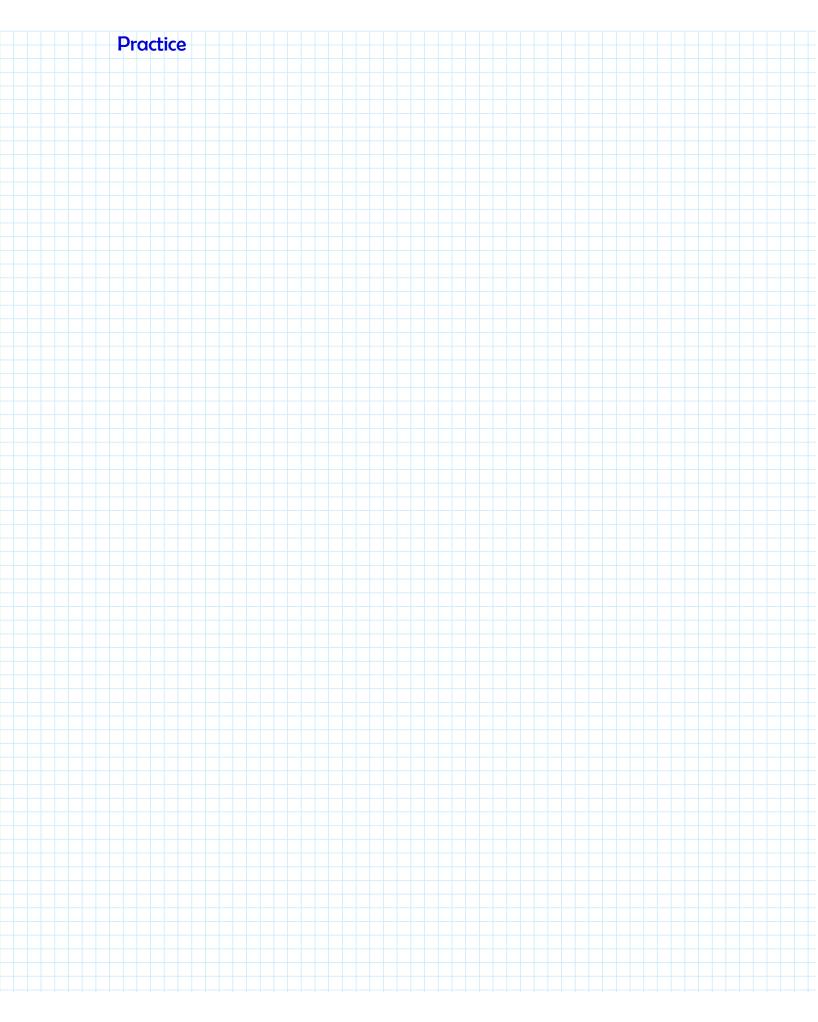
Transformation	Equation	Description		
Horizontal stretch	$g(\mathbf{x}) = c^{bx}$	Horizontal stretch about the <i>y</i> -axis by a factor of $\frac{1}{ b }$.		
Vertical stretch	$g(x) = a c^x$	 Vertical stretch about the <i>x</i>-axis by a factor of a . Multiplying <i>y</i>-coordintates of <i>f</i> (<i>x</i>) = <i>c</i>^x by <i>a</i>. 		
Reflecting	$g(x) = -c^x$	• Reflects the graph of $f(x) = c^x$ about the x-axis.		
	$g(x) = c^{-x}$	• Reflects the graph of $f(x) = c^x$ about the y-axis.		
Vertical translation	$g(\mathbf{x}) = c^{\mathbf{x}} + k$	 Shifts the graph of f (x) = c^x upward k units if k > 0. Shifts the graph of f (x) = c^x downward k units if k < 0. 		
Horizontal translation	$g(x)=c^{x\cdot h}$	 Shifts the graph of f (x) = c^x to the right h units if h > 0. Shifts the graph of f (x) = c^x to the left h units if h < 0. 		
		1		

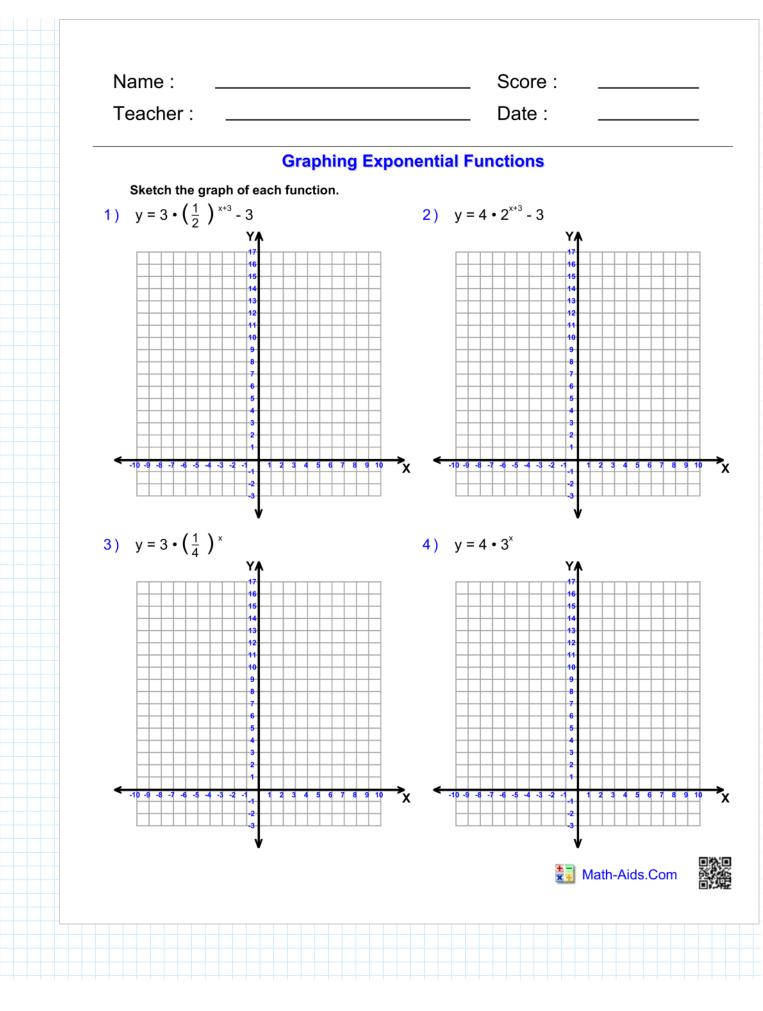
f(x) Notation f(x) + k	$y = 2^{x} + 3$	Examples
f(x) + k	$v = 2^{x} + 3$	
	,	3 units up
	$y = 2^{x} - 6$	6 units down
f(x - h)	$y = 2^{x-2}$	2 units right
	$y = 2^{x+1}$	1 unit left
af(x)	$y=6(2^x)$	stretch by 6
	$y = \frac{1}{2}(2^x)$	compression by $\frac{1}{2}$
$f\left(\frac{1}{b}x\right)$	$y = 2^{\left(\frac{1}{5}x\right)}$	stretch by 5
	$y = 2^{3x}$	compression by $\frac{1}{3}$
-f(x)	$y = -2^{x}$	across x-axis
<i>f</i> (- <i>x</i>)	$y = 2^{-x}$	across y-axis
	$af(x)$ $f\left(\frac{1}{b}x\right)$ $-f(x)$	$f(x - h)$ $y = 2^{x+1}$ $g = 6(2^{x})$ $y = \frac{1}{2}(2^{x})$ $f\left(\frac{1}{b}x\right)$ $y = 2^{\left(\frac{1}{5}x\right)}$ $y = 2^{3x}$ $-f(x)$ $y = -2^{x}$

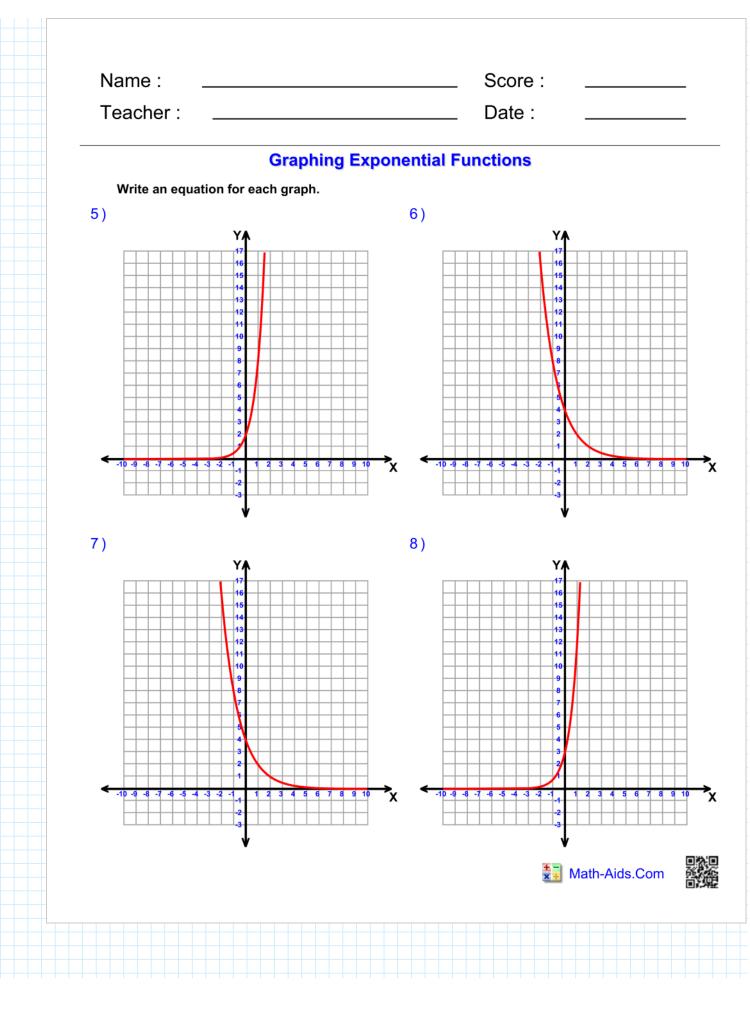
The basic properties of the graph $f(x) = b^x$ can be stated as follows:

Basic Properties of the Graph $f(x) = b^x$, b > 0, $b \neq 0$

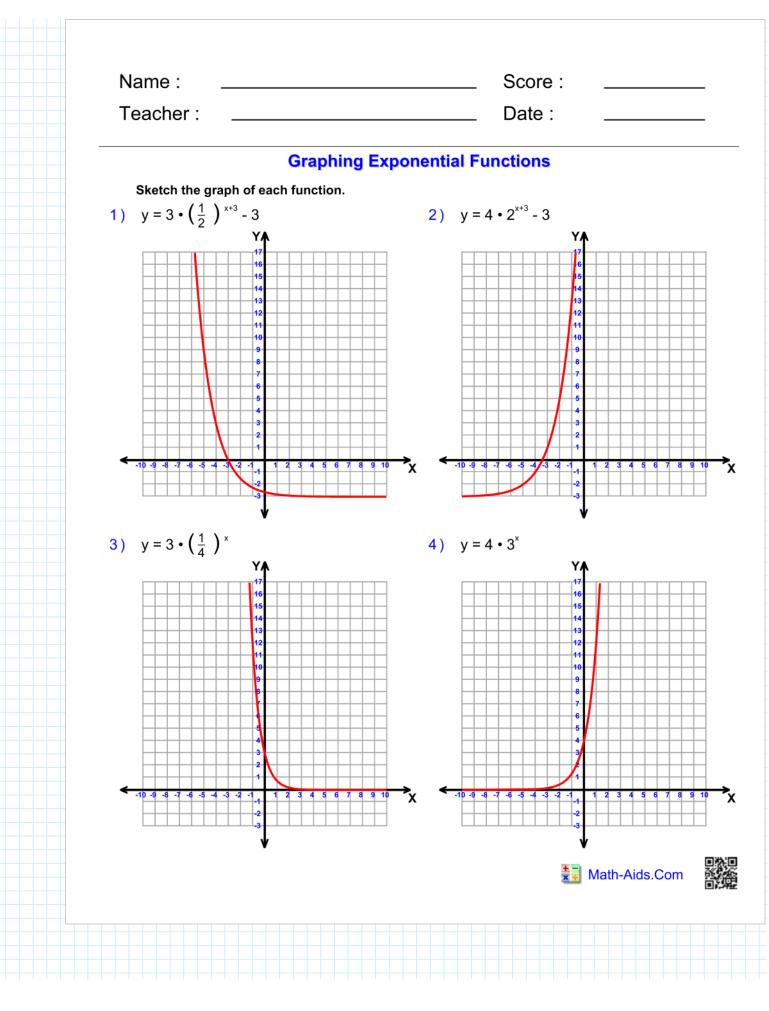
- 1. All graphs go through the point (0,1), and the graph has no *x*-intercept.
- 2. The *x*-axis is a horizontal asymptote with equation y = 0.
- 3. When b > 1, $f(x) = b^x$ is an increasing function.
- 4. When 0 < b < 1, $f(x) = b^x$ is a decreasing function.

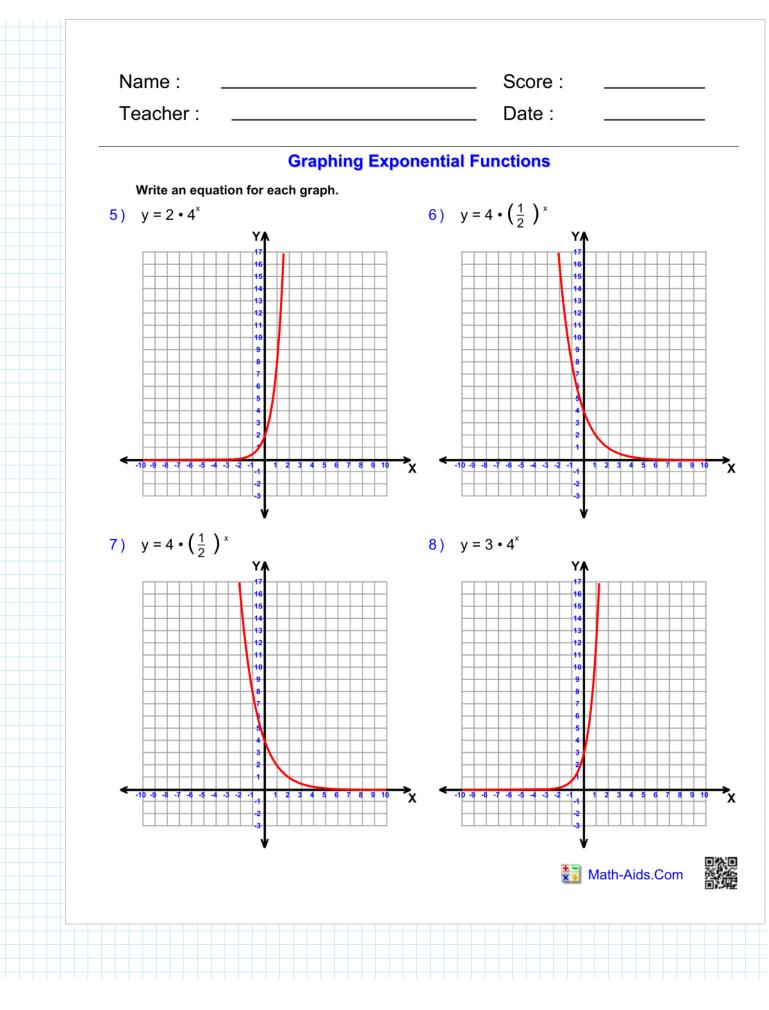


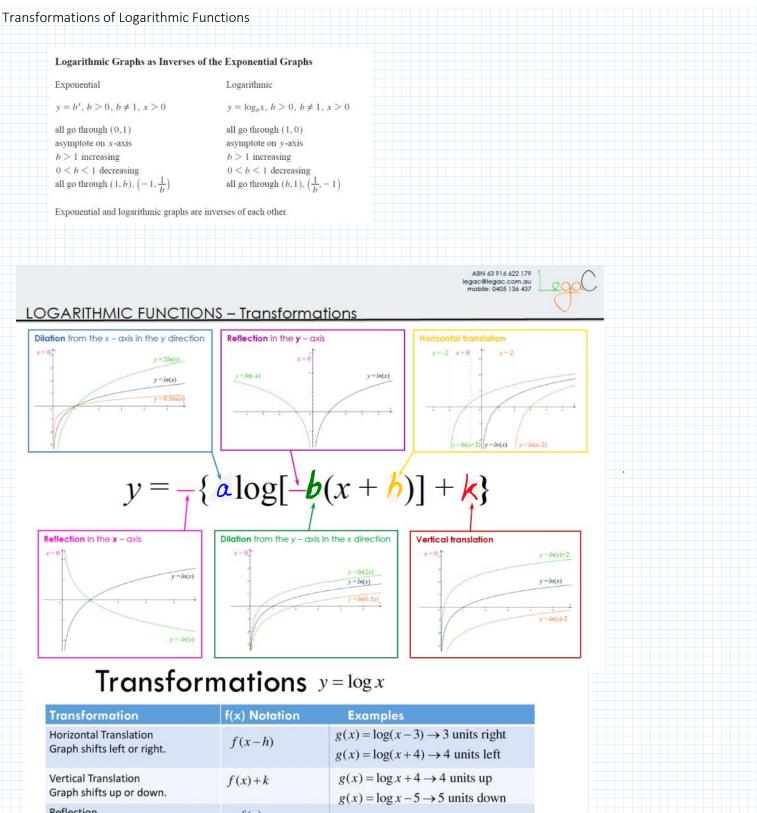




CH5 Page 14

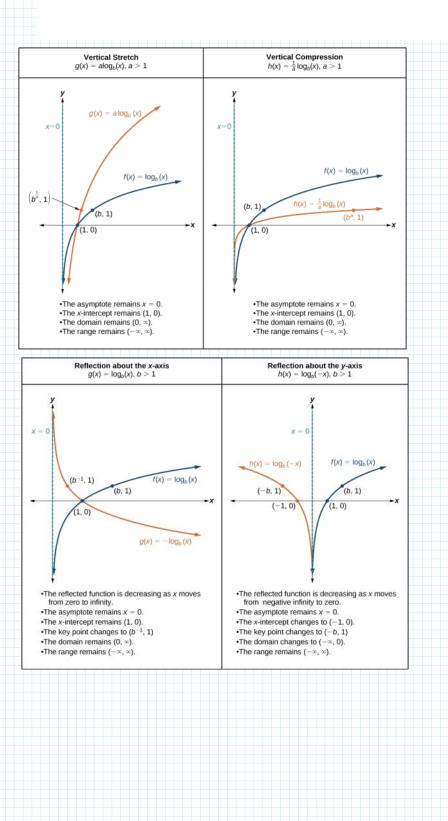


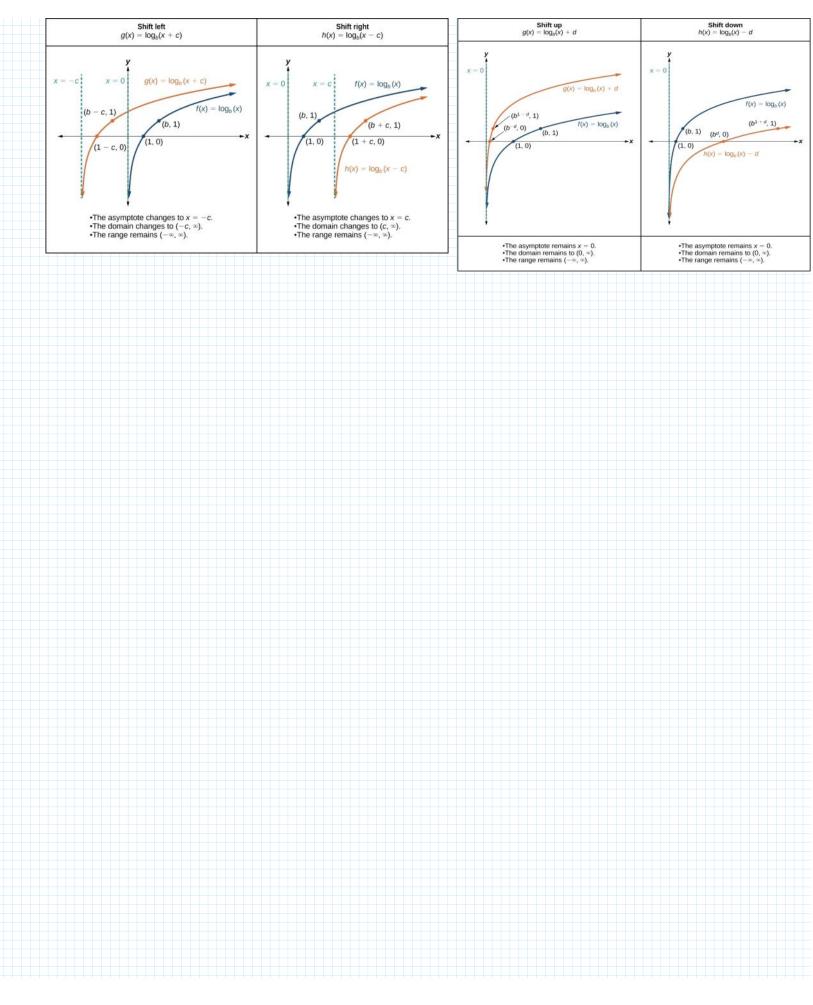


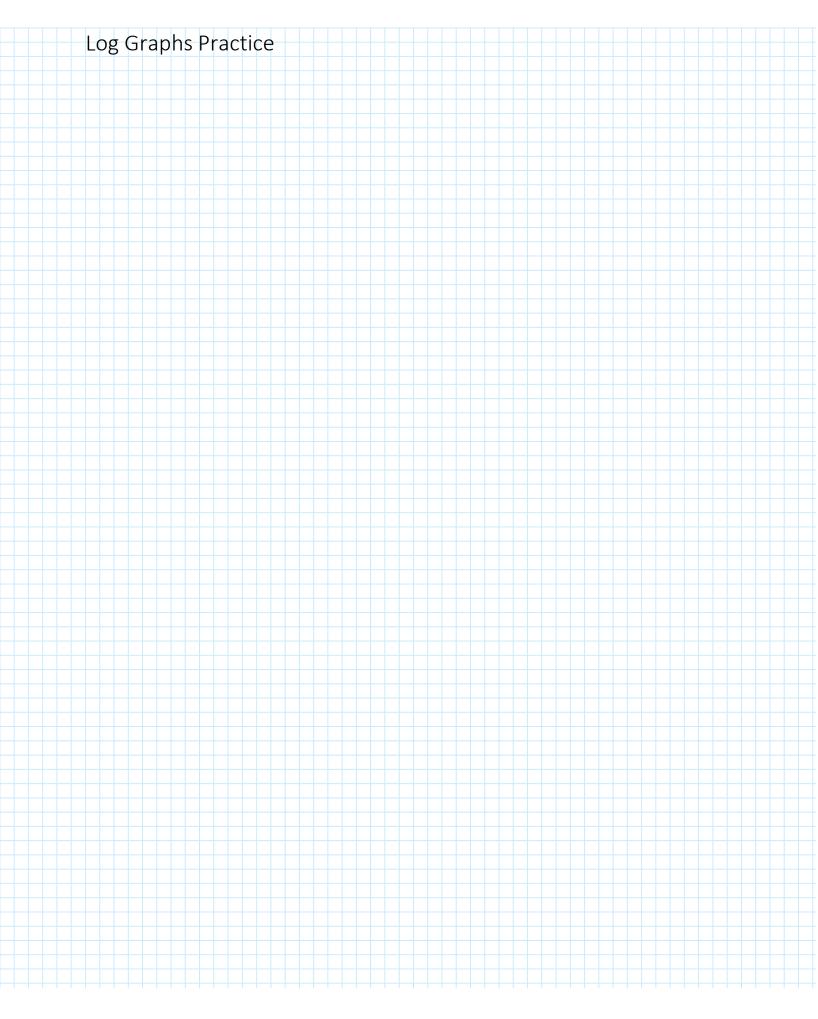


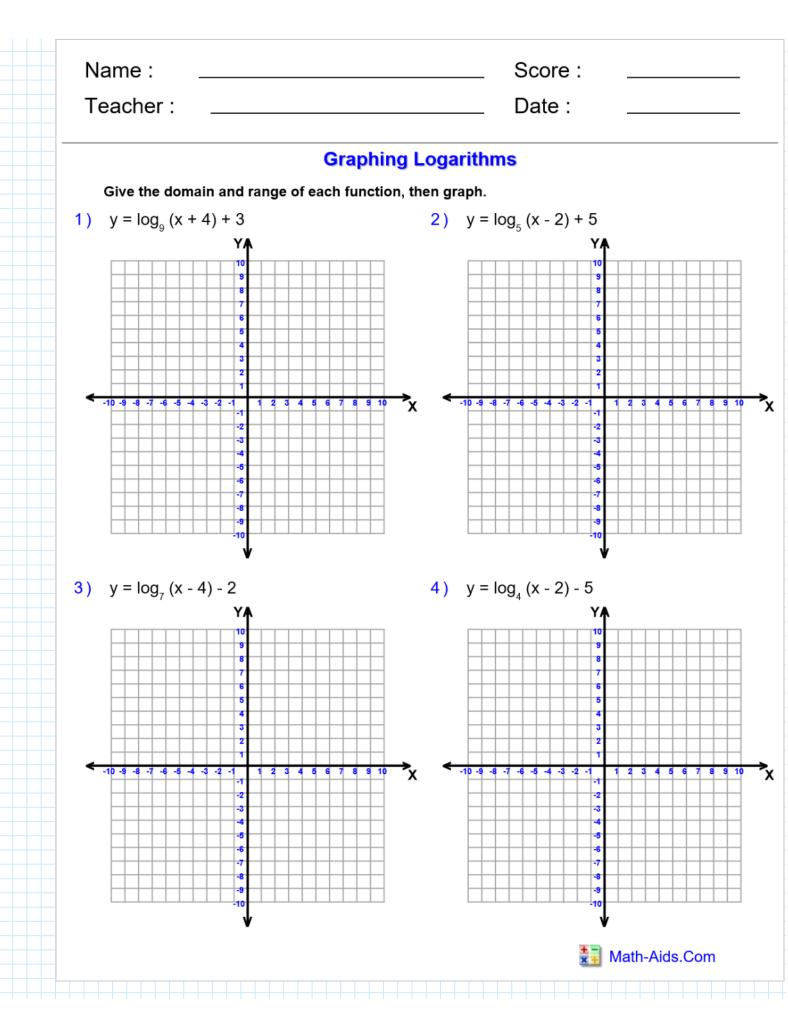
Graph shifts up or down.		$g(x) = \log x - 5 \rightarrow 5$ units down
Reflection Graph flips over x-axis.	-f(x)	$g(x) = -\log x \rightarrow \text{over x-axis}$
Reflection Graph flips over y-axis.	f(-x)	$g(x) = \log(-x) \rightarrow \text{over y-axis}$
Horizontal Shrink Graph shrinks toward y-axis.	f(ax), a > 1	$g(x) = \log 2x \rightarrow \text{shrink by } \frac{1}{2}$
Horizontal Stretch Graph stretches away from y-axis.	f(ax), 0 < a < 1	$g(x) = \log \frac{x}{2} \rightarrow \text{stretch by } 2$
Vertical Stretch Contraction Graph stretches away from x-axis.	$a \cdot f(x), a > 1$	$a(x) = 2 \cdot \log x \rightarrow \text{strateh by } 2$

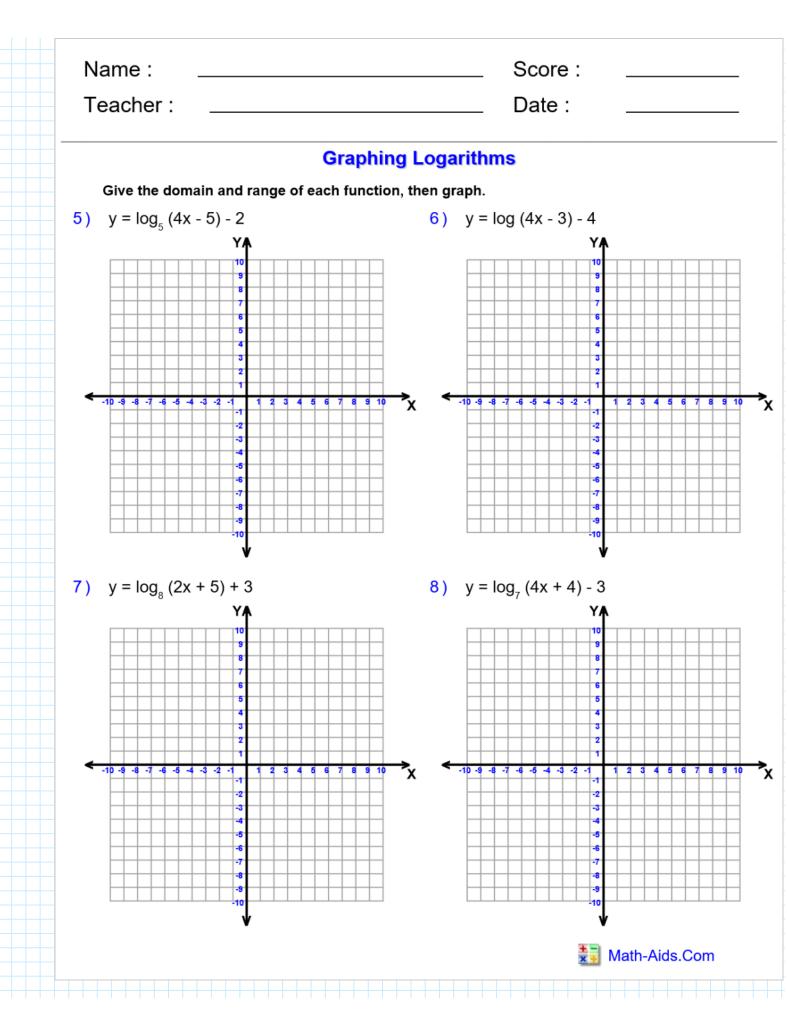
Graph stretches away from y-axis.	f(ax), 0 < a < 1	2
Vertical Stretch California Graph stretches away from x-axis.	$a \cdot f(x), a > 1$	$g(x) = 2 \cdot \log x \rightarrow \text{stretch by } 2$
Vertical Shrink Graph shrinks toward x-axis.	$a \cdot f(x), 0 < a < 1$	$g(x) = \frac{1}{2}\log x \rightarrow \text{shrink by } \frac{1}{2}$

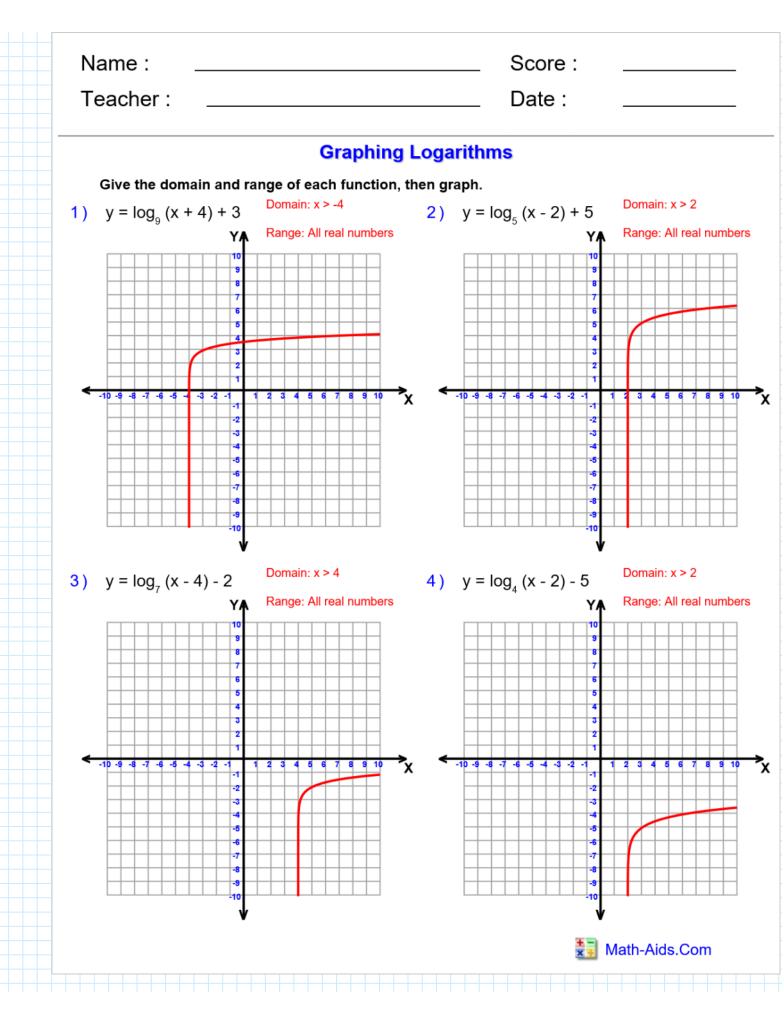


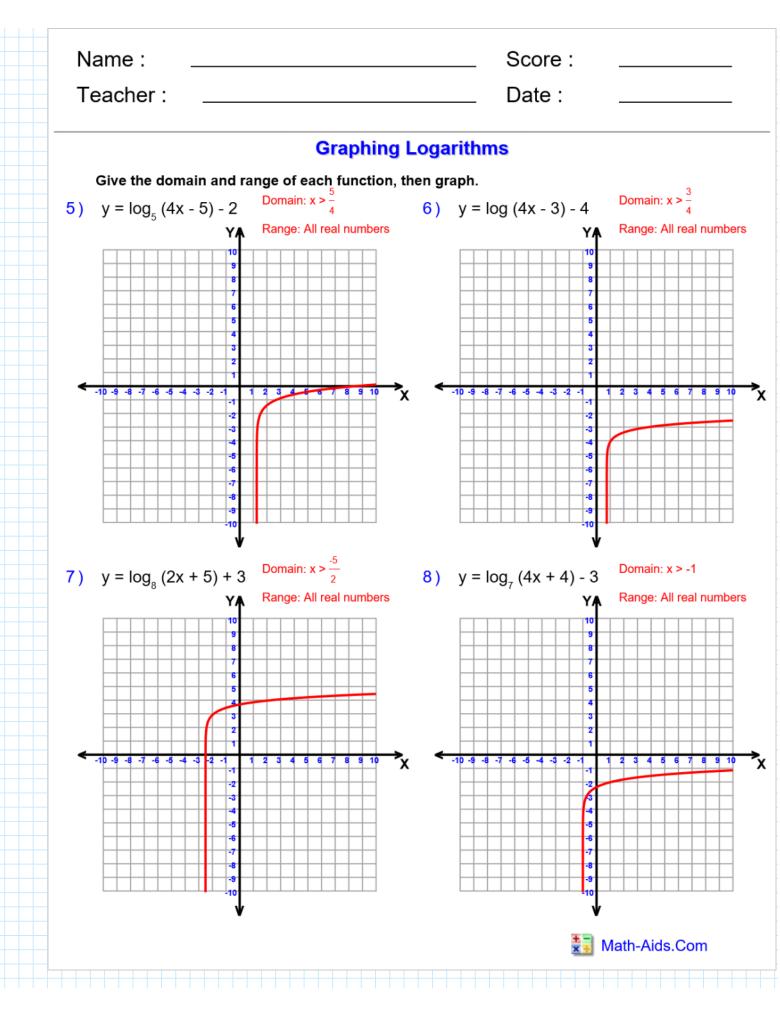












Understanding Logarithms

What is a log? A logarithm is an exponent.

 $\log_b(a) = c \iff b^c = a$

Logarithmic Form

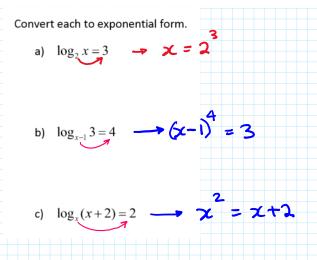
Exponential Form

Both forms use the same base. The logarithm is equal to the exponent.

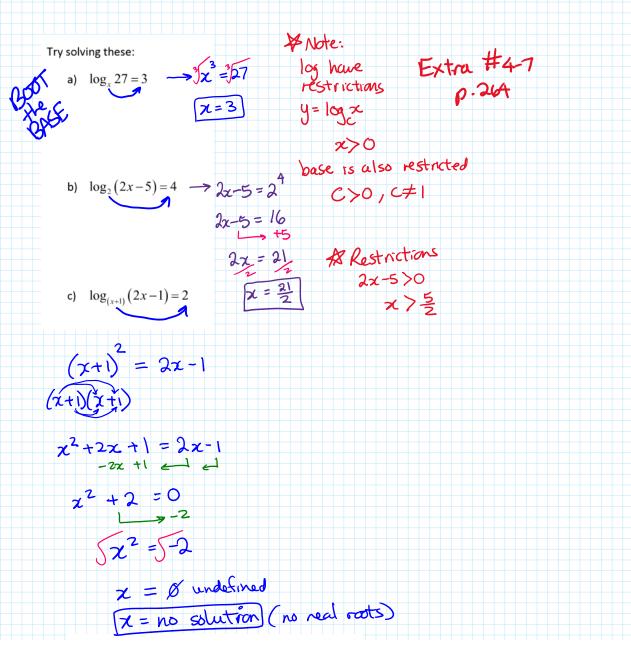
Changing between log and exponent form:

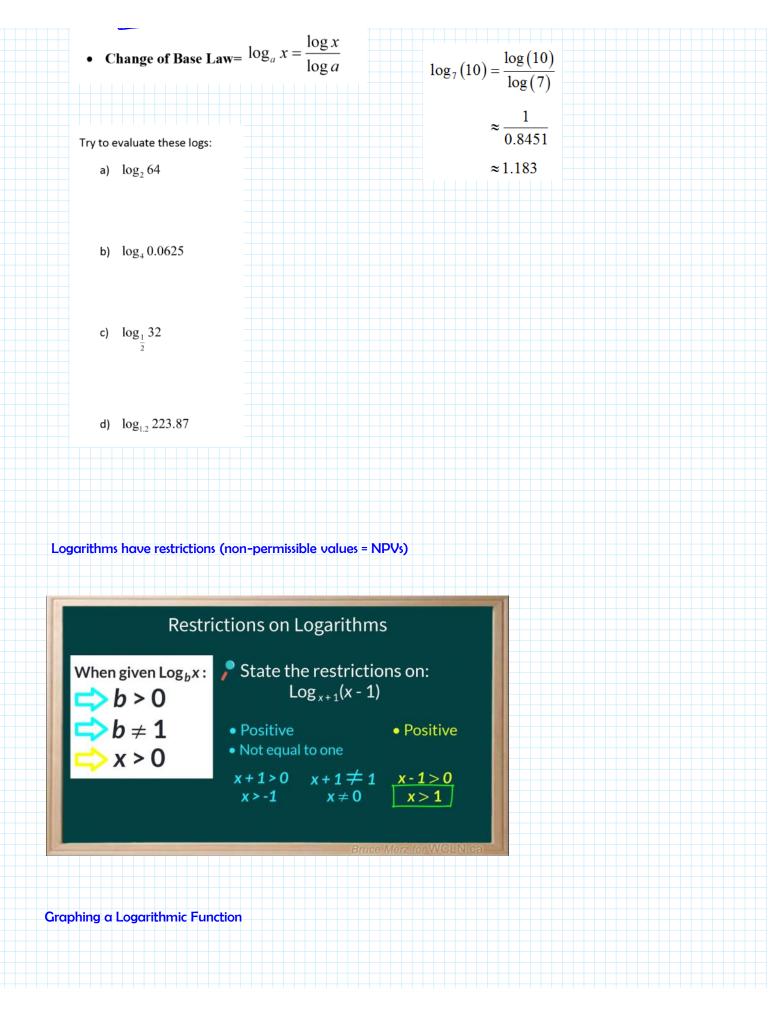
Convert each to logarithmic form.

- a) $2^m = n$ $\log n = m$ base $2^m = n$
- b) $10^{x-1} = 1000 \implies \log 1000 = x-1$
- More: p.263 # 2+#3
- c) $(x+1) = 3^{z+1} \rightarrow \log(x+1) = z+1$



Evaluating and solving logarithms by changing to exponential form. But there is a short-cut in some cases!





Graphing a logarithmic function is the same as graphing the inverse of the exponential function with the same base.

Recall: to graph the inverse, switch the x and y for each coordinate and plot (the graph reflects over the line y=x and the domain and range also inverse)

Ex. Graph the function $y = \log_2 x$

1. First determine the points on the function $y = 2^x$

