## Plan For Todays

1. Questions from Chapter 4?

* Hand-in Chapter 4 Project
* Do Chapter 4 Test

2. Go over any review for Ch3 and Ch4

- Unit 2 Exam is on Thursday
- Rewrite will be following Tuesday after class

3. Start Chapter 5: Exponents \& Logarithms
$>$ 5.18 Exponents
5 5.2: Logarithmic Functions and Graphs
> 5.3: Properties of Logarithms
$>$ 5.4: Exponential and Logarithmic Equations
> 5.5: Applications of Exponential and Log Equations
4. Work on Practice Questions from Workbook

Graphs of Exponential Functions



## Plan Going Forwards

1. Finish going through Chapter 3-4 practice questions and workbook reviews.

## UnIT 2 EXAM On CH3\&4 On THURSDAY, FEB. 22nD

- 10 Multiple Choice \& 20 marks on the Written
- ~1 hour - please prepare so you are not "learning" while doing the test
- Closed-book - no notes
- Rewrite is following Tuesday after class at 12:30pm
- I will email you this weekend when marks are posted so you can decide on the rewrite
- I will go over the marked exam on Tuesday

2. We will continue in Chapter 5 after the exam on Thursday.

- CHAPTER 5 PROJECT DUE THURSDAY. MAR. ITH
- CHAPTER 5 TEST ON TIURSDAY. MAR. 7 TH

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at anurita.weebly.com after class. Anurita Dhiman = adhiman@sd35.bc.ca

Tuesday, Feb. 20th In-Class Notes

## Exponent Rules

## EXPONENT RULES \& PRACTICE

1. PRODUCT RULE: To multiply when two bases are the same, write the base and ADD the exponents.

$$
x^{m} \cdot x^{n}=x^{m+n}
$$

Examples:
A. $x^{3} \cdot x^{8}=x^{11}$
B. $2^{4} \cdot 2^{2}=2^{6}$
C. $\left(x^{2} y\right)\left(x^{3} y^{4}\right)=x^{5} y^{5}$
2. QUOTIENT RULE: To divide when two bases are the same, write the base and SUBTRACT the exponents.

$$
\frac{x^{m}}{x^{n}}=x^{m-n}
$$

Examples:
A. $\frac{x^{5}}{x^{2}}=x^{3}$
B. $\frac{3^{5}}{3^{3}}=3^{2}$
C. $\frac{x^{2} y^{5}}{x y^{3}}=x y^{2}$
3. ZERO EXPONENT RULE: Any base (except 0 ) raised to the zero power is equal to one.

$$
x^{0}=1
$$

Examples:
A. $y^{0}=1$
B. $6^{0}=1$
C. $\left(7 a^{3} b^{-1}\right)^{0}=1$
4. POWER RULE: To raise a power to another power, write the base and MULTIPLY the exponents.

$$
\left(x^{m}\right)^{n}=x^{m \cdot n}
$$

Examples:
A. $\left(x^{3}\right)^{2}=x^{6}$
B. $\left(3^{2}\right)^{4}=3^{8}$
C. $\left(z^{5}\right)^{2}=z^{10}$
5. EXPANDED POWER RULE:

$$
(x y)^{m}=x^{m} y^{n} \quad\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}} \quad(x+y)^{2} \neq x^{2}+y^{z}
$$

Examples:
C. $\left(\frac{x^{2}}{y}\right)^{4}=\frac{\left(x^{2}\right)^{4}}{y^{4}}=\frac{x^{8}}{y^{4}}$ $=(x+y)(x+y)$
A. $(2 a)^{3}=2^{3} a^{3}=8 a^{3}$
D. $\left(\frac{2 x}{3 y^{2}}\right)^{3}=\frac{(2 x)^{3}}{\left(3 y^{2}\right)^{3}}=\frac{2^{3} x^{3}}{3^{3}\left(y^{2}\right)^{3}}=\frac{8 x^{3}}{27 y^{6}}$
6. NEGATIVE EXPONENTS: If a factor in the numerator or denominator is moved across the fraction bar, the sign of the exponent is changed.

$$
x^{-m}=\frac{1}{x^{m}} \quad \frac{1}{x^{-m}}=x^{m} \quad\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}
$$

Examples:
A. $x^{-3}=\frac{1}{x^{3}}$
B. $4^{-2}=\frac{1}{4^{2}}=\frac{1}{16}$
C. $-4 x^{5} y^{-2}=\frac{-4 x^{5}}{y^{2}}$
D. $\left(\frac{x^{2}}{y}\right)^{-3}=\left(\frac{y}{x^{2}}\right)^{3}=\frac{y^{3}}{x^{6}}$
E. $\left(3 x^{-2} y\right)\left(-2 x y^{-3}\right)=-6 x^{-1} y^{-2}=\frac{-6}{x y^{2}}$
F. $\frac{a^{-2} b^{3}}{c^{-4} d^{-1}}=\frac{b^{3} c^{4} d}{a^{2}}$
G. $\left(-2 x^{2} y^{-4}\right)^{-2}=\left(\frac{-2 x^{2}}{y^{4}}\right)^{-2}=\left(\frac{y^{4}}{-2 x^{2}}\right)^{2}=\frac{y^{8}}{4 x^{4}}$

CAUTION: $\quad-x \neq \frac{1}{x} \quad$ For example: $-3 \neq \frac{1}{3}$
REMEMBER: An exponent applies to only the factor it is directly next to unless parentheses enclose other factors. Examples:
A. $(-3)^{2}=(-3)(-3)=9$
B. $-3^{2}=-9$

An exponential expression with a fractional exponent can be expressed as a radical where the denominator is the index of the root, and the numerator remains as the exponent.


Example 1: Write $125^{\frac{1}{3}}$ as a radical expression

$$
125^{\frac{1}{3}}=\sqrt[3]{125^{1}}=\sqrt[3]{125} \rightarrow=5
$$

## EXPONENTS PRACTICE

Simplify:

1. $3 \cdot 4^{3}$
2. $4 x^{3} \cdot 2 x^{3}$
3. $x^{5} \cdot x^{3}$
4. $2 x^{3} \cdot 2 x^{2}$
5. $\frac{6^{5}}{6^{3}}$
6. $\frac{x^{4}}{x^{7}}$
7. $8^{0}$
8. $-(9 x)^{0}$
9. $\left(y^{4}\right)^{3}$
10. $\left(x^{2} y\right)^{4}$
11. $\frac{6 x^{7}}{2 x^{4}}$
12. $\frac{8 x^{5}}{4 x^{2}}$
13. $\left(2 c d^{4}\right)^{2}(c d)^{5}$
14. $\left(2 f g^{4}\right)^{4}(f g)^{6}$
15. $\frac{x^{5} y^{6}}{x y^{2}}$
16. $\frac{x^{2} y^{5}}{x y^{4}}$
17. $\left(\frac{4 x^{5} y}{16 x y^{4}}\right)^{3}$
18. $\left(\frac{5 x^{3} y}{20 x y^{5}}\right)^{4}$
19. $y^{-7}$
20. $7^{-2}$
21. $\frac{1}{x^{-5}}$
22. $\frac{1}{2^{-4}}$
23. $x^{5} \cdot x^{-1}$
24. $x^{-6}$
25. $x^{9} \cdot x^{-7}$
26. $\left(j^{-13}\right)\left(j^{4}\right)\left(j^{6}\right)$

## EXPONENTS PRACTICE ANSWERS

1. 192
2. $8 x^{6}$
3. $x^{8}$
4. $4 x^{5}$
5. 36
6. $\frac{1}{x^{3}}$
7. 1
8. -1
9. $y^{12}$
10. $x^{8} y^{4}$
11. $3 x^{3}$
12. $2 x^{3}$
13. $4 c^{7} d^{13}$
14. $16 f^{10} g^{22}$
15. $x^{4} y^{4}$
16. $x y$
17. $\frac{x^{12}}{64 y^{9}}$
18. $\frac{x^{8}}{256 y^{16}}$
19. $\frac{1}{y^{7}}$
20. $\frac{1}{49}$
21. $x^{5}$
22. 16
23. $x^{4}$
24. $\frac{1}{x^{6}}$
25. $x^{2}$
26. $\frac{1}{j^{3}}$
27. $x^{7}$
28. $4 x^{13}$
29. $\frac{x^{-1}}{x^{-8}}$
30. $\frac{52 x^{6}}{13 x^{-7}}$
31. $f^{-3}\left(f^{2}\right)\left(f^{-3}\right)$
32. $\frac{x^{-4}}{x^{-9}}$
33. $\frac{24 x^{6}}{12 x^{-8}}$
34. $\frac{3 x^{2} y^{-3}}{12 x^{6} y^{3}}$
35. $\left(2 x^{3} y^{-3}\right)^{-2}$
36. $\frac{2 x^{4} y^{-4}}{8 x^{7} y^{3}}$
37. $\left(4 x^{4} y^{-4}\right)^{3}$
38. $5 x^{2} y\left(2 x^{4} y^{-3}\right)$
39. $\left(\frac{-7 a^{2} b^{3} c^{0}}{3 a^{3} b^{4} c^{3}}\right)^{-4}$
40. $\left(\frac{-2 a^{3} b^{2} c^{0}}{3 a^{2} b^{3} c^{7}}\right)^{-2}$
41. $\frac{1}{f^{4}}$
42. $x^{5}$
43. $2 x^{14}$
44. $\frac{1}{4 x^{4} y^{6}}$
45. $\frac{y^{6}}{4 x^{6}}$
46. $\frac{1}{4 x^{3} y^{7}}$
47. $\frac{64 x^{12}}{y^{12}}$
48. $\frac{10 x^{6}}{y^{2}}$
49. $\frac{81 a^{4} b^{4} c^{12}}{2401}$
50. $\frac{9 b^{2} c^{14}}{4 a^{2}}$

## Review Exponent Rules

Recall some exponent rules: $\qquad$

One as Exponent

Any number raised to the power of 1 is that number

Any number or any letter raised to the zero exponent is always one.

$$
X^{0}=1
$$

$$
\begin{aligned}
X^{-a} & =\frac{1}{X^{a}} \\
\frac{1}{X^{-a}} & =X^{a}
\end{aligned}
$$

## EXPONENT RULES EXPLAINED! MULTIPLYING EXPONENTS

$$
3^{2} \cdot 3^{5}
$$

$$
3 \circ 3 \quad 3 \cdot 3 \cdot 3
$$

## EXPONENT RULES EXPLAINED!!

## DIVIDING EXPONENTS

$\frac{5^{7}}{5^{4}}=\frac{5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5}{p^{2} \cdot 5 \cdot 5 \cdot j} \frac{x^{a}}{X^{b}}=X^{a-b}$
EXPONENT RULES EXPLAINED!!
POWER TO POWER

$$
\text { Not }\left(2+x+y^{3}\right)^{4} \neq 2^{4}+x^{4}+y^{12}
$$

E Canoe: $\left(\frac{2}{3}\right)^{2}=\frac{2^{3}}{3^{2}}=\frac{2}{27}$

## Exponent Rules

## The Product Rule for Exponents (Multiplying Like Bases With Exponents)

When you multiply like bases you add your exponents.

$$
\begin{aligned}
& x^{n} \cdot x^{m}=x^{n+m} \\
& 2^{3} \cdot 2^{5}=2^{3+5}=2^{8} \\
& w^{2} \cdot w^{3}=w^{5}
\end{aligned}
$$

## Quotient Rule for Exponents

(Dividing Like Bases With Exponents)
When you divide like bases you subtract their exponents.

$$
\begin{gathered}
a^{m} \div a^{n}=a^{m-n} \\
7^{5} \div 7^{2}=7^{5-2}=7^{3} \\
2^{2} \div 2^{5}=2^{2-5}=2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}
\end{gathered}
$$

## Power of a Power Rule for Exponents

(Base Raised to Two Exponents)
When you raise a base to two exponents, you multiply those exponents together.

$$
\begin{gathered}
\left(a^{m}\right)^{n}=a^{m \times n} \\
\left(a^{5}\right)^{2}=a^{5 \times 2}=a^{10} \\
\left(2^{2}\right)^{-3}=2^{2 \times-3}=2^{-6}=\frac{1}{2^{6}}=\frac{1}{64}
\end{gathered}
$$

## Power of a Product Rule for Exponents (A Product Raised to an Exponent)

When you have a PRODUCT (not a sum or difference) raised to an exponent, you can simplify by raising each base in the product to that exponent.
$(a b)^{m}=a^{m} b^{m} \quad\left(2 x^{2}\right)^{3}=2^{3} x^{6}=8 x^{6} \quad\left(2 x^{2}\right)^{-3}=2^{-3} x^{-6}=\frac{1}{2^{3} x^{6}}=\frac{1}{8 x^{6}}$

## Power of a Quotient

## (A Quotient Raised to an Exponent)

When you have a QUOTIENT (not a sum or difference) raised to an exponent, you raise each base in the numerator and denominator of the quotient to that exponent.
$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
$\left(\frac{x^{5}}{y^{2}}\right)^{3}=\frac{x^{15}}{y^{6}}$
$\left(\frac{2^{3}}{4}\right)^{2}=\frac{2^{6}}{4^{2}}=\frac{64}{16}=4$

## Zero Exponents

Any base raised to an exponent of 0 has a value of 1.
$a^{0}=1 \quad 100^{\circ}=1$
$5 x y z^{0}=5 x y$
$(5 x y z)^{0}=1$

## Negative Exponents

A base raised to a negative exponent has the same value as the reciprocal of the base to the positive of the exponent.
$a^{-4}=\left(\frac{1}{a}\right)^{4}=\frac{1}{a^{4}} \quad 10^{-4}=\left(\frac{1}{10}\right)^{4}=\frac{1}{10^{4}} \quad\left(\frac{2}{3}\right)^{-2}=\left(\frac{3}{2}\right)^{2}=\frac{3^{2}}{2^{2}}=\frac{9}{4}$

## Rule

Example

## Notes

$$
\begin{array}{rlrl}
a^{n} \cdot a^{m} & =a^{n+m} & 2^{2} \cdot 2^{3}=2^{2+3}=2^{5} \\
\frac{a^{n}}{a^{m}} & =a^{n-m} & \frac{2^{5}}{2^{3}}=2^{5-3}=2^{2}=4 \\
a^{n} \cdot b^{n} & =(a \cdot b)^{n} & 2^{2} \cdot 3^{2}=(2 \cdot 3)^{2}=(6)^{2}=36 \\
\frac{a^{n}}{b^{n}} & =\left(\frac{a}{b}\right)^{n} & \frac{2^{2}}{3^{2}}=\left(\frac{2}{3}\right)^{2}=\frac{2}{3} \cdot \frac{2}{3}=\frac{4}{9} \\
\left(b^{n}\right)^{m} & =b^{n \cdot m} & \left(2^{3}\right)^{2}=2^{3 \cdot 2}=2^{6}=64 \\
a^{-m} & =\frac{1}{a^{m}} & & 2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \\
\sqrt[m]{a^{n}} & =a^{n / m} & \left(\frac{1}{2}\right)^{0}=1,3^{0}=1, \ldots \\
a^{0} & =1 & \left(\frac{1}{4}\right)^{1}=\frac{1}{4} \\
a^{1} & =a & 6^{1}=6, \ldots
\end{array}
$$

The bases, which are the a's in this case, must be the same.

The bases, which are the a's in this case, must be the same.

The exponents, which are the n's in this case, must be the same.

The exponents, the n's in this case, must be the same.

Alternatively, we can use the first

$$
\left(2^{3}\right)^{2}=2^{3} \cdot 2^{3}=2^{3+3}=2^{6}
$$

In order to solve, we must change negative exponents into positives with this method.

In some situations, we must change radicals into exponents with this method.

Any number raised to the power of zero is equal to 1 .

Any number raised to the power of 1 is equal to itself.

Pre Calculus 12
Unit 4 Exponents and Logarithms
Lesson 1 Assignment Review The Laws of Exponents
1.) Simplify the following and write answers with positive exponents only.
a) $-3 x^{-2} y^{5}$
b) $\frac{24 a^{2}}{3 a^{5}}$
c) $\frac{16 a^{-3}}{48 a^{-7} b^{2}}$
d) $\left(3 x^{-3} y^{2}\right)\left(-4 x^{-2} y^{-7}\right)$
e) $\left(-2 m^{4} n^{-3}\right)^{-3}$
f) $\frac{-m^{-3}\left(n^{-2}\right)^{3}}{n^{5}\left(m^{3}\right)^{2}}$
g) $\left(\frac{2 a^{-3} b^{2}}{3 a^{4} b^{-1}}\right)^{-2}$
h) $5 x^{-4} y^{3} \times\left(15 x^{-2} y^{3}\right)^{-1}$
i) $\frac{\left(15 a^{-2}\right)\left(18 a^{-5}\right)}{30 a^{-8}}$
j) $\frac{7 a^{-4} b c^{3}}{\left(2 a^{-2} b^{4} c^{-1}\right)^{3}}$
2.) Find the exact value of the following.
a) $7^{-3}$
b) $32^{\frac{2}{5}}$
c) $\left(\frac{3}{7}\right)^{-2}$
d) $\left(\frac{1}{6}\right)^{-3}$

Change the base of an exponential expression or equation:
3.) Evaluate the expressions for, $x=-1, y=2, z=3$.
a) $\left(2 x^{-1} y^{-3} z\right)\left(3 x^{2} y^{3} z^{-1}\right)$
b) $\frac{\left(2 x^{2} y^{4} z^{-2}\right)^{3}}{4 x^{4} y^{10} z^{-4}}$
4.) Convert the following to the indicated base.
a) $25^{-3 x}$ to base 5 .
b) $64^{a+4}$ to base 4 .
c) $\frac{1}{216^{3 x}}$ to base 6 .
d) $\left(\frac{1}{32}\right)^{a+1}$ to base 2 .
e) $\left(\frac{81}{49}\right)^{2 a}$ to base $\frac{3}{7}$.

ANSWERS
1a. $\frac{-3 y^{5}}{x^{2}}$
1b. $\frac{8}{a^{3}}$
1c. $\frac{a^{4}}{3 b^{2}}$
1d. $\frac{-12}{x^{5} y^{5}}$
1e. $-\frac{n^{9}}{8 m^{12}}$
1f. $\frac{-1}{m^{9} n^{11}}$
1g. $\frac{9 a^{14}}{4 b^{6}}$
1h. $\frac{1}{3 x^{2}}$

1i. $9 a$ 1j. $\frac{7 a^{2} c^{6}}{8 b^{11}}$
2a. $\frac{1}{343}$
2b. $4 \quad 2$ c. $\frac{49}{9}$
2d. 216

3a. -6
3b. $\frac{8}{9}$
4a. $5^{-6 x}$
4b. $4^{3 a+12}$
4c. $6^{-9 x}$
4d. $2^{-5 a-5}$
4e. $\frac{3^{8 a}}{7^{4 a}}$

## Solving Exponents

RECALL:
Rules of Exponents or Laws of Exponents

| Multiplication Rule | $a^{x} \times a^{y}=a^{x+y}$ |
| :--- | :--- |
| Division Rule | $a^{x} \div a^{y}=a^{x-y}$ |
| Power of a Power Rule | $\left(a^{x}\right)^{y}=a^{x y}$ |
| Power of a Product Rule | $(a b)^{x}=a^{x} b^{x}$ |
| Power of a Fraction Rule | $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$ |
| Zero Exponent | $a^{0}=1$ |
| Negative Exponent | $a^{-x}=\frac{1}{a^{x}}$ |
| Fractional Exponent | $a^{\frac{x}{y}}=\sqrt[y]{a^{x}}$ |

Solving when the base is a variable x :

Example 1 Solve the following equation for $x$ $x^{\frac{3}{2}}=125$

Example 2 Solve the following equation for $x$

$$
2 x^{\frac{3}{4}}=54
$$

Example 3 Solve the following equation for $x$.

$$
(2 x+1)^{\frac{2}{3}}=4
$$

When the variable is in the exponent:

- convert each base to the same base

$$
a^{x}=a^{y} \quad \text { If and only if } \quad x=y
$$

Examples:

$$
\begin{array}{ll}
2^{x}=64 & 3^{2 x}=27^{x-4} \\
\Rightarrow 2^{x}=2^{6} & \Rightarrow 3^{2 x}=\left(3^{3}\right)^{x-4} \\
\Rightarrow x=6 & \Rightarrow 2 x=3(x-4) \\
& \Rightarrow 2 x=3 x-12 \\
& \Rightarrow-x=-12 \\
& \Rightarrow x=12
\end{array}
$$

## Solve by Equating Exponents

Solve $4^{3 x}=8^{x+1} \quad$ Original Problem

$$
\begin{aligned}
\left(2^{2}\right)^{3 x} & =\left(2^{3}\right)^{x+1} & & \text { Rewrite with base 2 } \\
2^{6 x} & =2^{3 x+3} & & \text { Simplify exponents } \\
6 x & =3 x+3 & & \text { Equate exponents } \\
x & =1 & & \text { Simplify }
\end{aligned}
$$

## Solving Exponential Equations:

- If possible, express both sides as powers of the same base
- Equate the exponents
- Solve for variable

$$
\begin{gathered}
27\left(3^{x+1}\right)=9^{2 x-7} \\
3^{3}\left(3^{x+1}\right)=\left(3^{2}\right)^{2 x-7} \\
3^{3+x+1}=3^{2(2 x-7)} \\
3^{x+4}=3^{4 x-14}
\end{gathered}
$$

$$
x+4=4 x-14
$$

$$
4=3 x-14
$$

$$
18=3 x
$$

Solve: $\left(\frac{2}{3}\right)^{x+6}=\left(\frac{8}{27}\right)^{3 x}$

1. Find a common base

$$
\begin{aligned}
\frac{8}{27}=\left(\frac{2}{3}\right)^{3} & \left.\begin{array}{rl}
\left(\frac{2}{3}\right)^{x+6} & =\left[\left(\frac{2}{3}\right)^{3}\right]^{3 x} \\
\left(\frac{2}{3}\right)^{x+6} & =\left(\frac{2}{3}\right)^{9 x} \\
2+6 & =9 x \\
x+\text { Equate the exponents } & x
\end{array}\right)=\frac{3}{4}
\end{aligned}
$$

Example 1 Simplify $\frac{4^{6 x+1}}{8^{4 x+2}}$
Example 2 Solve $9^{2 x-3}=27^{1-x}$

Example 1 Solve the following equation for $x$
$2^{3 x-1}=16$
Example 2 Solve the following equation for $x$
$27^{2 x-1}=9^{x+2}$

Example 3 Solve the following equation for $x$
$\frac{1}{343^{x-1}}=49^{2 x-1}$

APPLICATIONS

EXPONENTLAL GROWTH formula
$y=a(1+r)^{\prime}$
$y=$ final amount a = initial amount $r=$ rate (as a decimal) $\dagger=$ \# of time periods

EXPONENTIAL GROWTHgraph


DECAY formula
$y=$ final amount a = initial amount $r=$ rate (as a decimal) $\dagger=$ \# of time periods

COMPOUND

EXPONENTIAL DECAYgraph $y=a(b)^{x}$ $a>0$ $0<b<1$ INTERESTPOrmula

$$
\mathbb{A}=\mathbb{P}\left(1+\frac{\mathbb{P}}{n}\right)^{n f}
$$

$\mathrm{A}=$ final amount
$\mathrm{P}=$ principal (starting amount) $\mathrm{r}=$ interest rate (as a decimal)
$\qquad$

$\dagger=$ time lin years)

# EXPONENTIAL 9ROWTHI $\&$ DECAY 

Exponential growth and decay can be modeled using the formula: $A=A_{o}(b)^{\frac{t}{n}}$
$A=$ final amount
$A_{o}=$ initial amount
$b=$ base which is the factor of change (growth or decay factor)
$t=$ time elapsed
$n=$ interval of time for growth or decay

Compound Interest: $A=P(1+i)^{\text {tn }}$ OR $A=P\left(1+\frac{r}{n}\right)^{t n}$
$P=$ Principal (initial amount)
$i=$ Interest rate divided by the number of times compounded per year
$n=$ number of compounding periods per year

## Richter Scales for Earthquakes:

$I=I_{01^{\circ}}(10)^{R_{\text {nigh }}-R_{\text {bor }}}$
$I=$ the intensity between the two Richter scale magnitudes
$R=$ difference in Richter scale magnitudes where 1 unit represents a 10 -fold increase or decrease
in magnitude.

## Decibel Scale:

$$
I=I_{0}(10)^{\frac{D b_{\text {hish }}-D b_{\text {bow }}}{10}}
$$

$I=$ the intensity of sound between the two decibel levels
$D b=$ difference in decibel scale levels where 10 units represent a 10 -fold increase or decrease in
decibel level.

## pH Scale:

$I=I_{0}(10)^{p H_{\text {high }}-p H_{\text {low }}}$
$I=$ the level of acidity or basicity between the two pH values
$p H=$ difference in values on pH scale where 1 unit represents a 10 -fold increase or decrease in pH
level (translates to change in acidity of a solution; either more or less acidic or basic).

The growth and decay formula is another variation of $f(x)=A\left(a^{x}\right)$.

## Growth and Decay Formulas

$A=A_{0}(x)^{\frac{t}{T}}$
$A=A_{0} e^{k t}$

A: final amount
A: final amount
$A_{0}$ : initial amount
$A_{0}$ : initial amount
$x$ : growth or decay value*
$e$ : constant $\approx 2.71828$
$t$ : total time remaining
$k$ : proportional constant
$T$ : time of growth or decay by factor of $x^{* *} \quad t$ : time
*for half-life questions, use $x=\frac{1}{2}$
for increasing by $10 \%$, use $1+.1=1.1$
for decreasing by $10 \%$, use $1-.1=0.9$
**for half-life questions, $T=$ half-life

Example 7 The half-life of plutonium-239 is about 25000 years. How much of a given sample will remain after 2000 years?

Example 8 The number of fruit flies increases by $25 \%$ every 3 days. If the population was 2000 fruit flies after 25 days, how many were there initially?

Solving Extra Practice

## Exponential Equations Not Requiring Logarithms

Date
Period
Solve each equation.

1) $4^{2 x+3}=1$
2) $5^{3-2 x}=5^{-x}$
3) $3^{1-2 x}=243$
4) $3^{2 a}=3^{-a}$
5) $4^{3 x-2}=1$
6) $4^{2 p}=4^{-2 p-1}$
7) $6^{-2 a}=6^{2-3 a}$
8) $2^{2 x+2}=2^{3 x}$
9) $6^{3 m} \cdot 6^{-m}=6^{-2 m}$
10) $\frac{2^{x}}{2^{x}}=2^{-2 x}$
11) $10^{-3 x} \cdot 10^{x}=\frac{1}{10}$
12) $3^{-2 x+1} \cdot 3^{-2 x-3}=3^{-x}$
13) $4^{-2 x} \cdot 4^{x}=64$
14) $6^{-2 x} \cdot 6^{-x}=\frac{1}{216}$
15) $2^{x} \cdot \frac{1}{32}=32$
16) $2^{-3 p} \cdot 2^{2 p}=2^{2 p}$
17) $64 \cdot 16^{-3 x}=16^{3 x-2}$
18) $\frac{81^{3 n+2}}{243^{-n}}=3^{4}$
19) $81 \cdot 9^{-2 b-2}=27$
20) $9^{-3 x} \cdot 9^{x}=27$
21) $\left(\frac{1}{6}\right)^{3 x+2} \cdot 216^{3 x}=\frac{1}{216}$
22) $243^{k+2} \cdot 9^{2 k-1}=9$
23) $16^{r} \cdot 64^{3-3 r}=64$
24) $16^{2 p-3} \cdot 4^{-2 p}=2^{4}$

Exponential Equations Not Requiring Logarithms
Date $\qquad$ Period Solve each equation.

1) $4^{2 x+3}=1$
2) $5^{3-2 x}=5^{-x}$
$\left\{-\frac{3}{2}\right\}$
\{3\}
3) $3^{1-2 x}=243$
$\{-2\}$
4) $3^{2 a}=3^{-a}$
$\{0\}$
5) $4^{3 x-2}=1$
$\left\{\frac{2}{3}\right\}$
6) $4^{2 p}=4^{-2 p-1}$
$\left\{-\frac{1}{4}\right\}$
7) $6^{-2 a}=6^{2-3 a}$
\{2\}
8) $2^{2 x+2}=2^{3 x}$
\{2\}
9) $6^{3 m} \cdot 6^{-m}=6^{-2 m}$
$\{0\}$
10) $\frac{2^{x}}{2^{x}}=2^{-2 x}$
$\{0\}$
11) $10^{-3 x} \cdot 10^{x}=\frac{1}{10}$
$\left\{\frac{1}{2}\right\}$
12) $3^{-2 x+1} \cdot 3^{-2 x-3}=3^{-x}$
$\left\{-\frac{2}{3}\right\}$
13) $4^{-2 x} \cdot 4^{x}=64$
$\{-3\}$
14) $6^{-2 x} \cdot 6^{-x}=\frac{1}{216}$
$\{1\}$
15) $2^{x} \cdot \frac{1}{32}=32$
16) $2^{-3 p} \cdot 2^{2 p}=2^{2 p}$
$\{0\}$
$\{10\}$
17) $64 \cdot 16^{-3 x}=16^{3 x-2}$
$\left\{\frac{7}{12}\right\}$

$$
\text { 18) } \begin{aligned}
& \frac{81^{3 n+2}}{243^{-n}}=3^{4} \\
& \left\{-\frac{4}{17}\right\}
\end{aligned}
$$

19) $81 \cdot 9^{-2 b-2}=27$
$\left\{-\frac{3}{4}\right\}$
20) $9^{-3 x} \cdot 9^{x}=27$
$\left\{-\frac{3}{4}\right\}$
21) $\left(\frac{1}{6}\right)^{3 x+2} \cdot 216^{3 x}=\frac{1}{216}$
$\left\{-\frac{1}{6}\right\}$
22) $243^{k+2} \cdot 9^{2 k-1}=9$

$$
\left\{-\frac{2}{3}\right\}
$$

23) $16^{r} \cdot 64^{3-3 r}=64$
$\left\{\frac{6}{7}\right\}$
24) $16^{2 p-3} \cdot 4^{-2 p}=2^{4}$
$\{4\}$

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com

