Tuesday, Feb. 20th

Plan For Today:

1. Questions from Chapter 4?

✤ Hand-in Chapter 4 Project

Bo Chapter 4 Test

- 2. Go over any review for Ch3 and Ch4
 - Unit 2 Exam is on Thursday
 - Rewrite will be following Tuesday after class

3. Start Chapter 5: Exponents & Logarithms

- 5.1: Exponents
- 5.2: Logarithmic Functions and Graphs
- 5.3: Properties of Logarithms
- 5.4: Exponential and Logarithmic Equations
- 5.5: Applications of Exponential and Log Equations
 4. Work on Practice Questions from Workbook

Plan Going Forward:

Graphs of Exponential Functions

1. Finish going through Chapter 3-4 practice questions and workbook reviews.

UNIT 2 EXAM ON CH3&4 ON THURSDAY, FEB. 22ND

- 10 Multiple Choice & 20 marks on the Written
- ~1 hour please prepare so you are not "learning" while doing the test
- Closed-book no notes
- Rewrite is following Tuesday after class at 12:30pm
- I will email you this weekend when marks are posted so you can decide on the rewrite
- I will go over the marked exam on Tuesday

2. We will continue in Chapter 5 after the exam on Thursday.

- O CHAPTER 5 PROJECT DUE THURSDAY, MAR. 7TH
- Chapter 5 test on Thursday, Mar. 7th

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at <u>anurita.weebly.com</u> after class. Anurita Dhiman = adhiman@sd35.bc.ca

Exponent Rules

EXPONENT RULES & PRACTICE

1. **PRODUCT RULE:** To multiply when two bases are the same, write the base and ADD the exponents. $x^m \cdot x^n = x^{m+n}$

Examples:

A.
$$x^3 \cdot x^8 = x^{11}$$

B. $2^4 \cdot 2^2 = 2^6$
C. $(x^2y)(x^3y^4) = x^5y^5$

2. QUOTIENT RULE: To divide when two bases are the same, write the base and SUBTRACT the exponents. $\frac{x^m}{x^n} = x^{m-n}$

Examples:

A.
$$\frac{x^5}{x^2} = x^3$$
 B. $\frac{3^5}{3^3} = 3^2$ C. $\frac{x^2 y^5}{x y^3} = x y^2$

3. ZERO EXPONENT RULE: Any base (except 0) raised to the zero power is equal to one.

$$x^0 = 1$$

Examples:

A.
$$y^0 = 1$$
 B. $6^0 = 1$ C. $(7a^3b^{-1})^0 = 1$

4. POWER RULE: To raise a power to another power, write the base and MULTIPLY the exponents. $(x^m)^n = x^{m \cdot n}$

Examples:

A.
$$(x^3)^2 = x^6$$

B. $(3^2)^4 = 3^8$
C. $(z^5)^2 = z^{10}$

5. EXPANDED POWER RULE:

Examples:
(xy)^m = x^myⁿ
$$\left(\frac{x}{y}\right)^{m} = \frac{x^{m}}{y^{m}}$$
 $\left(x+y\right)^{2} \neq x^{2}+y^{2}$
Examples:
A. $(2a)^{3} = 2^{3}a^{3} = 8a^{3}$
B. $(6x^{3})^{2} = 6^{2}(x^{3})^{2} = 36x^{6}$
D. $\left(\frac{2x}{3y^{2}}\right)^{3} = \frac{(2x)^{3}}{(3y^{2})^{3}} = \frac{2^{3}x^{3}}{3^{3}(y^{2})^{3}} = \frac{8x^{3}}{27y^{6}}$

6. NEGATIVE EXPONENTS: If a factor in the numerator or denominator is moved across the fraction bar, the sign of the exponent is changed.

$$x^{-m} = \frac{1}{x^m}$$
 $\frac{1}{x^{-m}} = x^m$ $\left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^n$

Examples:

A.
$$x^{-3} = \frac{1}{x^3}$$

B. $4^{-2} = \frac{1}{4^2} = \frac{1}{16}$
C. $-4x^5y^{-2} = \frac{-4x^5}{y^2}$
D. $\left(\frac{x^2}{y}\right)^{-3} = \left(\frac{y}{x^2}\right)^3 = \frac{y^3}{x^6}$
E. $(3x^{-2}y)(-2xy^{-3}) = -6x^{-1}y^{-2} = \frac{-6}{xy^2}$
F. $\frac{a^{-2}b^3}{c^{-4}d^{-1}} = \frac{b^3c^4d}{a^2}$
G. $(-2x^2y^{-4})^{-2} = \left(\frac{-2x^2}{y^4}\right)^{-2} = \left(\frac{y^4}{-2x^2}\right)^2 = \frac{y^8}{4x^4}$

CAUTION: $-x \neq \frac{1}{x}$ For example: $-3 \neq \frac{1}{3}$

REMEMBER: An exponent applies to <u>only</u> the factor it is directly next to *unless* parentheses enclose other factors. Examples:

A.
$$(-3)^2 = (-3)(-3) = 9$$

B.
$$-3^2 = -9$$

An *exponential expression* with a fractional exponent can be expressed as a *radical* where the denominator is the index of the root, and the numerator remains as the exponent.

Example 1: Write $125^{\frac{1}{3}}$ as a radical expression.

 $125^{\frac{1}{3}} = \sqrt[3]{125^{1}} = \sqrt[3]{125} \longrightarrow = 5$

EXPONENTS PRACTICE

Simplify:

1. $3 \cdot 4^3$	15. $\frac{x^5y^6}{xy^2}$	27. $\frac{x^{-1}}{x^{-8}}$
2. $4x^3 \cdot 2x^3$	16. $\frac{x^2y^5}{x^{1+4}}$	28. $\frac{52x^6}{13x^{-7}}$
4. $2x^3 \cdot 2x^2$	$(\frac{4x^5y}{x^5})^3$	29. $f^{-3}(f^2)(f^{-3})$
5. $\frac{6^5}{c^3}$	$\frac{17}{16xy^4}$	30. $\frac{x^{-4}}{x^{-9}}$
6. $\frac{x^4}{7}$	$18.\left(\frac{3x-y}{20xy^5}\right)$	31. $\frac{24x^6}{12x^{-8}}$
7. 8 ⁰	19. y^{-7}	32. $\frac{3x^2y^{-3}}{12x^6y^3}$
8. $-(9x)^0$	$21.\frac{1}{1}$	$33. (2x^3y^{-3})^{-2}$
9. $(y^4)^3$	x^{-5} 22. $\frac{1}{-1}$	34. $\frac{2x^4y^{-4}}{8x^7y^3}$
10. $(x^2y)^{-1}$	2^{-4} 23. $x^5 \cdot x^{-1}$	35. $(4x^4y^{-4})^3$
11. $\frac{1}{2x^4}$	24. x^{-6}	$36.5x^2y(2x^4y^{-3})$
$12.\frac{3\pi}{4x^2}$	25. $x^9 \cdot x^{-7}$	$37. \left(\frac{-7a^2b^3c^0}{3a^3b^4c^3}\right)^{-4}$
13. $(2cd^*)^2(cd)^3$ 14. $(2fg^4)^4(fg)^6$	26. $(j^{-13})(j^4)(j^6)$	$38. \left(\frac{-2a^3b^2c^0}{3a^2b^3c^7}\right)^{-2}$

EXPONENTS PRACTICE ANSWERS

1. 192	16. <i>xy</i>	29. $\frac{1}{f^4}$
2. $8x^6$	$17. \frac{x^{12}}{64y^9}$	30. <i>x</i> ⁵
3. x^8	x^8	31. 2 <i>x</i> ¹⁴
4. $4x^5$	18. $\frac{1}{256y^{16}}$	$32 - \frac{1}{2}$
5. 36	19. $\frac{1}{v^7}$	52 . $\frac{1}{4x^4y^6}$
6. $\frac{1}{x^3}$	20. $\frac{1}{49}$	33. $\frac{y^6}{4x^6}$
7. 1	21. <i>x</i> ⁵	34. $\frac{1}{4x^3y^7}$
81	22.16	35. $\frac{64x^{12}}{12}$
9. y^{12}	23. <i>x</i> ⁴	y ¹²
10. $x^8 y^4$	$24.\frac{1}{6}$	36. $\frac{10x}{y^2}$
11. $3x^3$	x°	37. $\frac{81a^4b^4c^{12}}{2404}$
12. $2x^3$	25. 4	2401 $9b^2c^{14}$
13. $4c^7d^{13}$	26. $\frac{1}{j^3}$	38. $\frac{38}{4a^2}$
14. $16f^{10}g^{22}$	27. x^7	
15. x^4y^4	28. $4x^{13}$	

10.2 9

Review Exponent Rules

Recall some exponent rules:

https://demonstrations.wolfram.com/LawsOfExponents/

Quotient Rule for Exponents (Dividing Like Bases With Exponents) When you divide like bases you subtract their exponents. $a^m \div a^n = a^{m-n}$ $7^5 \div 7^2 = 7^{5-2} = 7^3$ $2^2 \div 2^5 = 2^{2-5} = 2^{-3} = \frac{1}{2^3} = \frac{1}{8}$

Power of a Power Rule for Exponents (Base Raised to Two Exponents) When you raise a base to two exponents, you multiply those exponents together. $(a^{m})^{n} = a^{m \times n}$ $(a^{5})^{2} = a^{5 \times 2} = a^{10}$ $(2^{2})^{-3} = 2^{2 \times -3} = 2^{-6} = \frac{1}{2^{6}} = \frac{1}{64}$

Power of a Product Rule for Exponents (A Product Raised to an Exponent)

When you have a PRODUCT (not a sum or difference) raised to an exponent, you can simplify by raising each base in the product to that exponent.

 $(ab)^{m} = a^{m}b^{m} (2x^{2})^{3} = 2^{3}x^{6} = 8x^{6} (2x^{2})^{-3} = 2^{-3}x^{-6} = \frac{1}{2^{3}x^{6}} = \frac{1}{8x^{6}}$

Power of a Quotient (A Quotient Raised to an Exponent)

When you have a QUOTIENT (not a sum or difference) raised to an exponent, you raise each base in the numerator and denominator of the quotient to that exponent.

$\left(a \right)^{n} = a^{n}$	$(x^5)^3 - x^{15}$	$\left(2^{3}\right)^{2}$ _ 2 ⁶ _ 64 _ 4
$\left\lfloor \left(\overline{\mathbf{b}} \right)^{-} \overline{\mathbf{b}^{n}} \right\rfloor$	$\left(\frac{\mathbf{y}^2}{\mathbf{y}^2}\right) = \frac{\mathbf{y}^6}{\mathbf{y}^6}$	$\left(\frac{1}{4}\right)^{-}\frac{1}{4^2}-\frac{1}{16}-\frac{1}{4}$

Negative Exponents

A base raised to a negative exponent has the same value as the reciprocal of the base to the positive of the exponent.

$$a^{-4} = \left(\frac{1}{a}\right)^4 = \frac{1}{a^4}$$
 $10^{-4} = \left(\frac{1}{10}\right)^4 = \frac{1}{10^4}$ $\left(\frac{2}{3}\right)^{-2} = \left(\frac{3}{2}\right)^2 = \frac{3^2}{2^2} = \frac{9}{4}$

Rule	Example	Notes
$a^n \cdot a^m = a^{n+m}$	$2^2 \cdot 2^3 = 2^{2+3} = 2^5$	The bases, which are the a's in this case, must be the same.
$rac{a^n}{a^m}=~a^{n-m}$	$\frac{2^5}{2^3} = 2^{5-3} = 2^2 = 4$	The bases, which are the a's in this case, must be the same.
$a^n \cdot b^n = (a \cdot b)^n$	$2^2 \cdot 3^2 = (2 \cdot 3)^2 = (6)^2 = 36$	The exponents, which are the n's in this case, must be the same.
$rac{a^n}{b^n}=~\left(rac{a}{b} ight)^n$	$\frac{2^2}{3^2} = \left(\frac{2}{3}\right)^2 = \frac{2}{3} \cdot \frac{2}{3} = \frac{4}{9}$	The exponents, the n's in this case, must be the same.
$(b^n)^m = b^{n \cdot m}$	$(2^3)^2 = 2^{3 \cdot 2} = 2^6 = 64$	Alternatively, we can use the first rule: $(2^3)^2 = 2^3 \cdot 2^3 = 2^{3+3} = 2^6$
$a^{-m} = \frac{1}{a^m}$	$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$	In order to solve, we must change negative exponents into positives with this method.
$\sqrt[m]{a^n} = a^{n/m}$	$\sqrt[3]{2^2} = 2^{2/3}$	In some situations, we must change radicals into exponents with this method.
$a^{0} = 1$	$\left(\frac{1}{2}\right)^0 = 1, 3^0 = 1,$	Any number raised to the power of zero is equal to 1.
$a^1 = a$	$\left(\frac{1}{4}\right)^1 = \frac{1}{4}, 6^1 = 6, \dots$	Any number raised to the power of 1 is equal to itself.

Unit 4 Exponents and Logarithms

Pre Calculus 12

Lesson 1 Assignment Review The Laws of Exponents

1.) Simplify the following and write answers with positive exponents only.

a)
$$-3x^{-2}y^{5}$$
 b) $\frac{24a^{2}}{3a^{5}}$ c) $\frac{16a^{-3}}{48a^{-7}b^{2}}$ d) $(3x^{-3}y^{2})(-4x^{-2}y^{-7})$ e) $(-2m^{4}n^{-3})^{-3}$
f) $\frac{-m^{-3}(n^{-2})^{3}}{n^{5}(m^{3})^{2}}$ g) $\left(\frac{2a^{-3}b^{2}}{3a^{4}b^{-1}}\right)^{-2}$ h) $5x^{-4}y^{3} \times (15x^{-2}y^{3})^{-1}$ i) $\frac{(15a^{-2})(18a^{-5})}{30a^{-8}}$ j) $\frac{7a^{-4}bc^{3}}{(2a^{-2}b^{4}c^{-1})^{3}}$

2.) Find the exact value of the following.

a) 7^{-3} b) $32^{\frac{2}{5}}$ c) $\left(\frac{3}{7}\right)^{-2}$ d) $\left(\frac{1}{6}\right)^{-3}$

Change the base of an exponential expression or equation:

3.) Evaluate the expressions for, x = -1, y = 2, z = 3. a) $(2x^{-1}y^{-3}z)(3x^{2}y^{3}z^{-1})$ b) $\frac{(2x^{2}y^{4}z^{-2})^{3}}{4x^{4}y^{10}z^{-4}}$ 4.) Convert the following to the indicated base. a) 25^{-3x} to base 5. b) 64^{a+4} to base 4. c) $\frac{1}{216^{3x}}$ to base 6. d) $\left(\frac{1}{32}\right)^{a+1}$ to base 2. e) $\left(\frac{81}{49}\right)^{2a}$ to base $\frac{3}{7}$. ANSWERS 1a. $\frac{-3y^5}{x^2}$ 1b. $\frac{8}{a^3}$ 1c. $\frac{a^4}{3b^2}$ 1d. $\frac{-12}{x^5y^5}$ 1e. $-\frac{n^9}{8m^{12}}$ 1f. $\frac{-1}{m^9n^{11}}$ 1g. $\frac{9a^{14}}{4b^6}$ 1h. $\frac{1}{3x^2}$ 1i. 9*a* 1j. $\frac{7a^2c^6}{8b^{11}}$ 2a. $\frac{1}{343}$ 2b. 4 2c. $\frac{49}{9}$ 2d. 216 3a. -6 3b. $\frac{8}{9}$ 4a. 5^{-6x} 4b. 4^{3a+12} 4c. 6^{-9x} 4d. 2^{-5a-5} 4e. $\frac{3^{8a}}{7^{4a}}$

Solving Exponents

RECALL:

Rules of Exponents or Laws of Exponents

Multiplication Rule	$a^x \times a^y = a^{x+y}$
Division Rule	$a^x \div a^y = a^{x-y}$
Power of a Power Rule	$\left(a^{x}\right)^{y}=a^{xy}$
Power of a Product Rule	$(ab)^x = a^x b^x$
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
Zero Exponent	$a^{0} = 1$
Negative Exponent	$a^{-x} = \frac{1}{a^x}$
Fractional Exponent	$a^{\frac{x}{y}} = \sqrt[y]{a^x}$

Solving when the base is a variable x:

Example 1 Solve the following equation for x. $x^{\frac{3}{2}} = 125$ Example 2 Solve the following equation for x. $2x^{\frac{3}{4}} = 54$

Solve the following equation for *x*.

Example 3

$$(2x+1)^3=4$$

When the variable is in the exponent: • convert each base to the same base

Exponential growth and decay can be modeled using the formula: $A = A_a(b)^{\overline{n}}$

A =final amount

 $A_o =$ initial amount

b = base which is the factor of change (growth or decay factor)

t = time elapsed

n = interval of time for growth or decay

Compound Interest: $A = P(1+i)^{tn}$ OR $A = P\left(1+\frac{r}{n}\right)^{tn}$

P = Principal (initial amount)

i = Interest rate divided by the number of times compounded per year

n = number of compounding periods per year

Richter Scales for Earthquakes:

$$I = I_{\circ}(10)^{R_{high} - R_{low}}$$

I = the intensity between the two Richter scale magnitudes

R = difference in Richter scale magnitudes where 1 unit represents a 10-fold increase or decrease

in magnitude.

Decibel Scale:

Ι

$$=I_{o}(10)^{\frac{Db_{high}-Db_{low}}{10}}$$

I = the intensity of sound between the two decibel levels

Db = difference in decibel scale levels where 10 units represent a 10-fold increase or decrease in

decibel level.

pH Scale:

$$I = I_{\circ}(10)^{pH_{high}-pH_{l}}$$

I = the level of acidity or basicity between the two pH values

pH = difference in values on pH scale where 1 unit represents a 10-fold increase or decrease in pH

level (translates to change in acidity of a solution; either more or less acidic or basic).

The growth and decay formula is another variation of $f(x) = A(a^x)$.

The number of fruit flies increases by 25% every 3 days. If the population was 2000 fruit flies after 25 days, how many were there initially?

Exponential Equations Not Re	equiring Logarithms Date	Pariod
Solve each equation.		renou
1) $4^{2x+3} = 1$	2) $5^{3-2x} = 5^{-x}$	
3) $3^{1-2x} = 243$	4) $3^{2a} = 3^{-a}$	
5) $4^{3x-2} = 1$	6) $4^{2p} = 4^{-2p-1}$	
7) $6^{-2a} = 6^{2-3a}$	8) $2^{2x+2} = 2^{3x}$	
9) $6^{3m} \cdot 6^{-m} = 6^{-2m}$	$10) \ \frac{2^x}{2^x} = 2^{-2x}$	
11) $10^{-3x} \cdot 10^x = \frac{1}{10}$	12) $3^{-2x+1} \cdot 3^{-2x-3} = 3^{-x}$	

-1-

13)
$$4^{-2x} \cdot 4^{x} = 64$$

14) $6^{-2x} \cdot 6^{-x} = \frac{1}{216}$
15) $2^{x} \cdot \frac{1}{32} = 32$
16) $2^{-3p} \cdot 2^{2p} = 2^{2p}$

17)
$$64 \cdot 16^{-3x} = 16^{3x-2}$$

18) $\frac{81^{3n+2}}{243^{-n}} = 3^4$

19)
$$81 \cdot 9^{-2b-2} = 27$$
 20) $9^{-3x} \cdot 9^x = 27$

21)
$$\left(\frac{1}{6}\right)^{3x+2} \cdot 216^{3x} = \frac{1}{216}$$
 22) $243^{k+2} \cdot 9^{2k-1} = 9$

23) $16^r \cdot 64^{3-3r} = 64$ 24) $16^{2p-3} \cdot 4^{-2p} = 2^4$

-2-

Exponential Equations Not Requir	ing Logarithms Dat	te Period
Solve each equation.		
1) $4^{2x+3} = 1$	2) $5^{3-2x} = 5^{-x}$	
$\left\{-\frac{3}{2}\right\}$	{3}	
3) $3^{1-2x} = 243$	4) $3^{2a} = 3^{-a}$	
{-2}	{0}	
5) $4^{3x-2} = 1$	6) $4^{2p} = 4^{-2p-1}$	
$\left\{\frac{2}{3}\right\}$	$\left\{-\frac{1}{4}\right\}$	
7) $6^{-2a} = 6^{2-3a}$	8) $2^{2x+2} = 2^{3x}$	
{2}	{2}	
9) $6^{3m} \cdot 6^{-m} = 6^{-2m}$	10) $\frac{2^x}{x} = 2^{-2x}$	
{0}	2^{x} {0}	
11) $10^{-3x} \cdot 10^{x} = \frac{1}{12}$	12) $3^{-2x+1} \cdot 3^{-2x-3} =$	3 ^{-x}
$\left\{\frac{1}{2}\right\}$	$\left\{-\frac{2}{3}\right\}$	
	-1-	

13)
$$4^{-2x} \cdot 4^x = 64$$

{-3}

14)
$$6^{-2x} \cdot 6^{-x} = \frac{1}{216}$$

15)
$$2^{x} \cdot \frac{1}{32} = 32$$

{10}
{10}
16) $2^{-3p} \cdot 2^{2p} = 2^{2p}$
{0}

17)
$$64 \cdot 16^{-3x} = 16^{3x-2}$$

 $\left\{\frac{7}{12}\right\}$

18) $\frac{81^{3n+2}}{243^{-n}} = 3^4$
 $\left\{-\frac{4}{17}\right\}$

19)
$$81 \cdot 9^{-2b-2} = 27$$

 $\left\{-\frac{3}{4}\right\}$
 $\left\{-\frac{3}{4}\right\}$
 $\left\{-\frac{3}{4}\right\}$

21)
$$\left(\frac{1}{6}\right)^{3x+2} \cdot 216^{3x} = \frac{1}{216}$$

 $\left\{-\frac{1}{6}\right\}$
22) $243^{k+2} \cdot 9^{2k-1} = 9$
 $\left\{-\frac{2}{3}\right\}$
23) $16^r \cdot 64^{3-3r} = 64$
 $\left\{\frac{6}{7}\right\}$
24) $16^{2p-3} \cdot 4^{-2p} = 2^4$
 $\left\{4\right\}$

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com

2