Plan For Today:

- 1. Questions from Chapter 3 or 4?
 - * Do Unit 2 Exam
 - st I will send an email on the weekend when they are marked
- 2. Start Chapter 5: Exponents & Logarithms
 - > 5.1: Exponent;
 - > 5.2: Logarithmic Functions and Graphs
 - 5.3: Properties of Logarithms
 - > 5.4: Exponential and Logarithmic Equations
 - > 5.5: Applications of Exponential and Log Equations
- 3. Work on Practice Questions from Workbook

Plan Going Forward:

1. If you're planning to rewrite the U2 exam, continue reviewing until Tuesday.

> UNIT 2 EXAM REWRITE ON TUESDAY, FEB. 27TH

- = 12 Multiple Choice & 18 marks on the Written
- ~1.5 hour please prepare so you are not "learning" while doing the test
- Closed-book no notes
- Rewrite is following Tuesday after class at 12:30pm
- I will email you this weekend when marks are posted so you can decide on the rewrite
- I will go over the marked exam on Tuesday

2. We will continue in Chapter 5 on Tuesday.

O CHECK-IN QUIZ ON 5.1-5.2 ON TUESDAY, FEB. 27TH

- CHAPTER 5 PROJECT (PART A&B) DUE THURSDAY, MAR. 7TH
 - PART A IS IN DESMOS: <u>http://tinyurl.com/PC12-Feb2024-Ch5PartA</u>
 - Part B is on handout
- Chapter 5 test on thursday, Mar. 7th

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at <u>anurita.weebly.com</u> after class. Anurita Dhiman = adhiman@sd35.bc.ca

Intro to Exponential Functions

An exponential function is written in the form: $y = C^x$, where C is the base of the function. To review exponent rules, complete all of the practice questions on the Exponent Rules handout. Try these:

What is the base of each of the following functions?

a)
$$y = 3^{x}$$

b) $y = \frac{1}{4}^{x}$
c) $y = 3\left(\frac{1}{2}\right)^{-x} + 1$
d) $y = -2(5)^{x-1} - 3$

To graph a basic exponential function in the form of $y = C^x$, start with a general set of x-values, substitute them into the function and determine the y-values. Do this in a table of values and graph the points.

Ex. Graph the function $y = 2^x$ you will have to keep in mind the fraction rules.

1. First determine the points on the function $y = 2^x$

Notice you will never be able to make y = 0 no matter how low x becomes. y will just get closer and closer to zero. The means there's an asymptote at y=0

$$\{ x \mid x \in \mathbb{R} \}$$
$$\{ y \mid y \ge 0, y \in \mathbb{R} \}$$

To graph it in your calculator use the ^ to raise the base to x.

Try graphing the following in the same steps as above AND determine the domain and range:

Intro to Exponential Functions

An exponential function is written in the form: $y = C^{*}$, where C is the base of the function.

To review exponent rules, complete all of the practice questions on the Exponent Rules handout. Try these:

What is the base of each of the following functions?

To graph a basic exponential function in the form of $y = C^x$, start with a general set of x-values, substitute them into the function and determine the y-values. Do this in a table of values and graph the points.

Ex. Graph the function $y = 2^{\tau}$ you will have to keep in mind the fraction rules.

1. First determine the points on the function $y = 2^{\tau}$

Ch7 Page 2

Notice you will never be able to make $\gamma = 0$ no matter how low x becomes. y will just get closer and closer to zero. The means there's an asymptote at $\gamma=0$

+

0 1

13

29

3 27

Ch7 Page 3

Solving Exponents

RECALL:

Rules of Exponents or Laws of Exponents

Multiplication Rule	$a^x \times a^y = a^{x+y}$
Division Rule	$a^x \div a^y = a^{x-y}$
Power of a Power Rule	$\left(a^{x}\right)^{y}=a^{xy}$
Power of a Product Rule	$(ab)^x = a^x b^x$
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
Zero Exponent	$a^{0} = 1$
Negative Exponent	$a^{-x} = \frac{1}{a^x}$
Fractional Exponent	$a^{\frac{x}{y}} = \sqrt[y]{a^x}$

Solving when the base is a variable x:

Example 1 Solve the following equation for x. $x^{\frac{3}{2}} = 125$ Example 2 Solve the following equation for x. $2x^{\frac{3}{4}} = 54$

 $2x^4 = 54$ Solve the following eq

Example 3

$$(2x+1)^{\overline{3}}=4$$

When the variable is in the exponent: • convert each base to the same base

CH5 Page 11

APPLICATIONS

Exponential growth and decay can be modeled using the formula: $A = A_a(b)^{\overline{n}}$

A =final amount

 $A_o =$ initial amount

b = base which is the factor of change (growth or decay factor)

t = time elapsed

n = interval of time for growth or decay

Compound Interest: $A = P(1 + i)^{tn} \text{ OR } A = P\left(1 + \frac{r}{n}\right)^{tn}$

P = Principal (initial amount)

i = Interest rate divided by the number of times compounded per year

n = number of compounding periods per year

Richter Scales for Earthquakes:

$$I = I_{\circ}(10)^{R_{high} - R_{low}}$$

I = the intensity between the two Richter scale magnitudes

R = difference in Richter scale magnitudes where 1 unit represents a 10-fold increase or decrease

in magnitude.

Decibel Scale:

Ι

$$=I_{\circ}(10)^{\frac{Db_{high}-Db_{low}}{10}}$$

I = the intensity of sound between the two decibel levels

Db = difference in decibel scale levels where 10 units represent a 10-fold increase or decrease in

decibel level.

pH Scale:

$$I = I_{\circ}(10)^{pH_{high} - pH_{high}}$$

I = the level of acidity or basicity between the two pH values

pH = difference in values on pH scale where 1 unit represents a 10-fold increase or decrease in pH

level (translates to change in acidity of a solution; either more or less acidic or basic).

The growth and decay formula is another variation of $f(x) = A(a^x)$.

Growth and Decay Formulas $A = A_0(x)^{\frac{t}{T}}$ $A = A_0 e^{kt}$ A: final amount A: final amount A₀: initial amount A_0 : initial amount x: growth or decay value* *e*: constant ≈ 2.71828 t: total time remaining k: proportional constant T: time of growth or decay by factor of x^{**} t: time *for half-life questions, use $x = \frac{1}{2}$ for increasing by 10%, use 1 + .1 = 1.1for decreasing by 10%, use 1 - .1 = 0.9** for half-life questions, T = half-life

Exponential Equations Not Requi	iring Logarithms Date	Period
Solve each equation.	ning Doganalinis Date	Tenou
1) $4^{2x+3} = 1$	2) $5^{3-2x} = 5^{-x}$	
3) $3^{1-2x} = 243$	4) $3^{2a} = 3^{-a}$	
5) $4^{3x-2} = 1$	6) $4^{2p} = 4^{-2p-1}$	
7) $6^{-2a} = 6^{2-3a}$	8) $2^{2x+2} = 2^{3x}$	
9) $6^{3m} \cdot 6^{-m} = 6^{-2m}$	$10) \ \frac{2^x}{2^x} = 2^{-2x}$	
11) $10^{-3x} \cdot 10^x = \frac{1}{10}$	12) $3^{-2x+1} \cdot 3^{-2x-3} = 3^{-x}$	

-1-

13)
$$4^{-2x} \cdot 4^{x} = 64$$

14) $6^{-2x} \cdot 6^{-x} = \frac{1}{216}$
15) $2^{x} \cdot \frac{1}{32} = 32$
16) $2^{-3p} \cdot 2^{2p} = 2^{2p}$

17)
$$64 \cdot 16^{-3x} = 16^{3x-2}$$

18) $\frac{81^{3n+2}}{243^{-n}} = 3^4$

19)
$$81 \cdot 9^{-2b-2} = 27$$
 20) $9^{-3x} \cdot 9^x = 27$

21)
$$\left(\frac{1}{6}\right)^{3x+2} \cdot 216^{3x} = \frac{1}{216}$$
 22) $243^{k+2} \cdot 9^{2k-1} = 9$

23) $16^r \cdot 64^{3-3r} = 64$ 24) $16^{2p-3} \cdot 4^{-2p} = 2^4$

-2-

Kuta Software - Infinite Algebra 2	Name	
Exponential Equations Not Requir	ing Logarithms Date	Period
Solve each equation.		
1) $4^{2x+3} = 1$	2) $5^{3-2x} = 5^{-x}$	
$\left\{-\frac{3}{2}\right\}$	{3}	
3) $3^{1-2x} = 243$	4) $3^{2a} = 3^{-a}$	
{-2}	{0}	
5) $4^{3x-2} = 1$	6) $4^{2p} = 4^{-2p-1}$	
$\left\{\frac{2}{3}\right\}$	$\left\{-\frac{1}{4}\right\}$	
7) $6^{-2a} = 6^{2-3a}$	8) $2^{2x+2} = 2^{3x}$	
{2}	{2}	
9) $6^{3m} \cdot 6^{-m} = 6^{-2m}$	2^{x} 2^{-2x}	
{0}	$10) \frac{1}{2^x} = 2^{-10}$	
	{0}	
11) $10^{-3x} \cdot 10^{x} = \frac{1}{10}$	12) $3^{-2x+1} \cdot 3^{-2x-3} = 3^{-x}$	
10	$\left\{-\frac{2}{2}\right\}$	
$\left\{\frac{1}{2}\right\}$	(3)	
	-1-	

13)
$$4^{-2x} \cdot 4^x = 64$$

{-3}

14)
$$6^{-2x} \cdot 6^{-x} = \frac{1}{216}$$

15)
$$2^{x} \cdot \frac{1}{32} = 32$$

{10}
{10}
16) $2^{-3p} \cdot 2^{2p} = 2^{2p}$
{0}

17)
$$64 \cdot 16^{-3x} = 16^{3x-2}$$

 $\left\{\frac{7}{12}\right\}$

18) $\frac{81^{3n+2}}{243^{-n}} = 3^4$
 $\left\{-\frac{4}{17}\right\}$

19)
$$81 \cdot 9^{-2b-2} = 27$$

 $\left\{-\frac{3}{4}\right\}$
 $\left\{-\frac{3}{4}\right\}$
 $\left\{-\frac{3}{4}\right\}$

21)
$$\left(\frac{1}{6}\right)^{3x+2} \cdot 216^{3x} = \frac{1}{216}$$

 $\left\{-\frac{1}{6}\right\}$
22) $243^{k+2} \cdot 9^{2k-1} = 9$
 $\left\{-\frac{2}{3}\right\}$
23) $16^r \cdot 64^{3-3r} = 64$
 $\left\{\frac{6}{7}\right\}$
24) $16^{2p-3} \cdot 4^{-2p} = 2^4$
 $\left\{\frac{4}{4}\right\}$

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com

2

Graphs and Transformations of Exponential Functions

https://www.varsitytutors.com/hotmath/hotmath_help/topics/graphing-exponential-functions

A simple exponential function to graph is $y = 2^x$.

x	-3	-2	-1	0	1	2	3
$y=2^x$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8

Changing the base changes the shape of the graph.

Notice that the graph has the x -axis as an asymptote on the left, and increases very fast on the right.

Replacing y with y - k (which is the same as adding k to the right side) translates the graph k units up.

Transformation	Equation	Description
Horizontal stretch	$g(\mathbf{x}) = c^{bx}$	Horizontal stretch about the <i>y</i> -axis by a factor of $\frac{1}{ b }$.
Vertical stretch	g(x) = a c ^x	 Vertical stretch about the <i>x</i>-axis by a factor of a . Multiplying <i>y</i>-coordintates of <i>f</i> (<i>x</i>) = <i>c</i>^x by <i>a</i>.
Reflecting	$g(x) = -c^x$	• Reflects the graph of $f(x) = c^x$ about the x-axis.
	$g(x)=c^{-x}$	• Reflects the graph of $f(x) = c^x$ about the y-axis.
Vertical translation	$g(\mathbf{x}) = c^{\mathbf{x}} + k$	 Shifts the graph of f (x) = c^x upward k units if k > 0. Shifts the graph of f (x) = c^x downward k units if k < 0.
Horizontal translation	$g(x)=c^{x\cdot h}$	 Shifts the graph of f (x) = c^x to the right h units if h > 0. Shifts the graph of f (x) = c^x to the left h units if h < 0.

Transformations of Exponential Functions				
Transformation	f(x) Notation	Examples		
Vertical translation	f(x) + k	$y = 2^{x} + 3$	3 units up	
		$y = 2^{x} - 6$	6 units down	
Horizontal translation	f(x - h)	$y = 2^{x-2}$	2 units right	
Horizontal translation		$y = 2^{x+1}$	1 unit left	
Vertical stretch	af(x)	$y = 6(2^{x})$	stretch by 6	
or compression		$y = \frac{1}{2}(2^x)$	compression by $\frac{1}{2}$	
Horizontal stretch	$f\left(\frac{1}{b}x\right)$	$y = 2^{\left(\frac{1}{5}x\right)}$	stretch by 5	
or compression		$y = 2^{3x}$	compression by $\frac{1}{3}$	
-f(x)		$y = -2^{x}$	across x-axis	
Reflection	f(-x)	$y = 2^{-x}$	across y-axis	

The basic properties of the graph $f(x) = b^x$ can be stated as follows:

Basic Properties of the Graph $f(x) = b^x$, b > 0, $b \neq 0$

- 1. All graphs go through the point (0,1), and the graph has no *x*-intercept.
- 2. The *x*-axis is a horizontal asymptote with equation y = 0.
- 3. When b > 1, $f(x) = b^x$ is an increasing function.
- 4. When 0 < b < 1, $f(x) = b^x$ is a decreasing function.

CH5 Page 26

CH5 Page 27

Understanding Logarithms

What is a log? A logarithm is an exponent.

 $\log_b(a) = c \iff b^c = a$

Logarithmic Form

Exponential Form

More: p.263 # 2+#3

Both forms use the same base. The logarithm is equal to the exponent.

Changing between log and exponent form:

Convert each to logarithmic form.

- a) $2^m = n$ $\log n = m$ base
- b) $10^{x-1} = 1000 \implies \log 1000 = x-1$
- c) $(x+1)=3^{z+1} \rightarrow \log_3(x+1) = z+1$

Evaluating and solving logarithms by changing to exponential form. But there is a short-cut in some cases!

Graphing a logarithmic function is the same as graphing the inverse of the exponential function with the same base.

Recall: to graph the inverse, switch the x and y for each coordinate and plot (the graph reflects over the line y=x and the domain and range also inverse)

Ex. Graph the function $y = \log_2 x$

1. First determine the points on the function $y = 2^x$

Reflection Graph flips over x-axis.	-f(x)	$g(x) = -\log x \rightarrow \text{over x-axis}$
Reflection Graph flips over y-axis.	f(-x)	$g(x) = \log(-x) \rightarrow \text{over y-axis}$
Horizontal Shrink Graph shrinks toward y-axis.	f(ax), a > 1	$g(x) = \log 2x \rightarrow \text{shrink by } \frac{1}{2}$
Horizontal Stretch Graph stretches away from y-axis.	f(ax), 0 < a < 1	$g(x) = \log \frac{x}{2} \rightarrow \text{stretch by } 2$
Vertical Stretch Calification Graph stretches away from x-axis.	$a \cdot f(x), a > 1$	$a(r) = 2 \cdot \log r \rightarrow \text{stretch by } 2$

Graph stretches away from y-axis.	f(ax), 0 < a < 1	2
Vertical Stretch China in Graph stretches away from x-axis.	$a \cdot f(x), a > 1$	$g(x) = 2 \cdot \log x \rightarrow \text{stretch by } 2$
Vertical Shrink Graph shrinks toward x-axis.	$a \cdot f(x), 0 < a < 1$	$g(x) = \frac{1}{2}\log x \rightarrow \text{shrink by } \frac{1}{2}$

