Plan For Todays

1．Questions \＆Review from 8．4？
楽 Do 5．3 Check－in Quiz Log Laws

2．Finish Chapter 5：Exponents \＆Logarithms

＊＊5．1：Exponents
摂 5．2：Logarithmic Functions and Graphs
摂 5．3：Properties of Logarithms
录 5．4s Exponential and Logarithmic Equations
瓷 5．5：Applications of Exponential and Log Equation

Solving Exp \＆Log Equations

Exponential Equation
 Logarithmic Equation

3．Work on Practice Questions from Workbook

Plan Going Forwards

1．Finish going through Ch5 and chapter practice questions in workbook（5．6）and finish working on the practice review questions handout．
－CHAPTER 5 PROJECT（PART ABB）DUE THURSDAY，MAR．7TH
－PART A IS UN DESMOS：http：／／tinyurl．com／PC12－Feb2024－Ch5PartA
－parr b is on handout

UNIT 3 EXAM On CH5 On THURSDAY，MAR．7TH

－ 12 Multiple Choice of 18 marks on the Written
－$~ 1.5$ hour－please prepare so you are not＂learning＂while doing the test
－Closedbook－no notes
－Rewrite is following Tuesday after class at $12: 30 \mathrm{pm}$
－I will email you on the weekend when marks are posted so you can decide on the rewrite
－I will go over the marked exam on Tuesday
Please let me know if you have any questions or concerns about your progress in this course．The notes from today will be posted at anurita．weebly．com after class．
Anurita Dhiman＝adhiman＠sd35．bc．ca

Tuesday, March 5th In-Class Notes

Mar. 5, 2024
Name: \qquad KEY TOTAL $=$ \qquad / 7 marks

Check-in Quiz Section 5.3:
Logarithm Laws \& Exponential Applications
Complete the following questions SHOWING ALL WORK and steps where applicable.

1. Write the following expressions as a single logarithm in simplest form:

1 mark each $=2$ marks
a) $\log _{2} 24-\log _{2} 3+2 \log _{2} 2^{2}$
b) $\overbrace{2 \log _{5} x+\log _{5} y-\frac{1}{2} \overbrace{\log _{5} z} \frac{1}{2}}$

$$
\begin{aligned}
& \log _{2}\left(\frac{24}{3} \times 2^{2}\right)^{x} \\
& \log _{2}(32)=\log _{2} x^{5} \\
&=5
\end{aligned}
$$

$$
\begin{aligned}
& \log _{5} x^{2}+\log _{5} y-\log _{5} \sqrt{2} \\
& =\log _{5}\left(\frac{x^{2} y}{\sqrt{2}}\right)
\end{aligned}
$$

2. Write each expression in terms of individual logarithms of x, y, and z.

1 mark each $=2$ marks
a) $\log _{3}\left(\frac{\sqrt[4]{a}}{b_{1}^{3 / c}}\right)$
b) $\log _{6}\left(\frac{w^{3}}{(r s)^{2}}\right)=\log _{6}\left(\frac{w^{3}}{r^{2} s^{2}}\right)$
$\log _{3} \sqrt{a}-\log _{3} b^{3}+\log _{3} c$
$\log _{3}^{\sqrt[4]{a} a}-\log _{3} b-\log _{3} c$

$$
\frac{1}{4} \log _{3} a-3 \log _{3} b-\log _{3} c
$$

$$
+2 \times g_{k}^{5}
$$

Page 1 of $\mathbf{2}$
3. Simplify and evaluate the following.
$\longrightarrow \log _{3} \frac{1}{27}+\log _{3} \sqrt{3}$
1 mark each $=2$ marks
a) $\log _{3}\left(\frac{1}{27} \cdot \sqrt{3}\right) \log _{3} 3^{-3} \log _{3} 3^{\frac{1}{2}}$ b) $\log _{4} 16+\log _{4}(\sqrt[5]{64})$

4. Evaluate the following:

$$
\text { Recall: } A=A_{o}(x)^{\frac{t}{T}}
$$

a. A 12.98 gram sample of Carbon- 14 that has a half-life of 5740 years. How much of the sample would remain after 207637 years?

$$
\begin{aligned}
A=12.98(0.5)^{54^{40}} & \Rightarrow 1.67 \times 10^{-10} \text { grams } \\
& =0.000000000167 \text { grams }
\end{aligned}
$$

b. The doubling rate of a particular bacterial cell is 38 minutes. Assume you start with one cell. How many bacteria would be present after 24 hours. (hint: same units required for time)

$$
\begin{aligned}
A= & 1(2)^{\frac{140 / 38}{10}} \begin{aligned}
A= & 24 \mathrm{hys} 5 \times \frac{60 \mathrm{~min}}{b r}=1440 \mathrm{~min} \\
A & \\
& 256000000000 \text { bacteria. } \\
& \quad \text { Page } 2 \text { of } 2
\end{aligned}
\end{aligned}
$$

5.4 solving exponential functions with logs

Recall: if common base is possible solve as follows:

$$
\begin{aligned}
& 3^{x+1}=9^{x-2} \\
& 3^{x+1}=\left(3^{2}\right)^{x-2} \\
& 3^{x+1}=3^{2 x-4} \\
& x+1=2 x-4 \\
& -2 x 4-1 \\
& -x=-5 \\
& x=5
\end{aligned}
$$

$$
\begin{aligned}
& 3^{x+1}=5^{x-2} \\
& \log ^{x+1}=\log ^{5^{x-2}} \\
& (x+1)^{2} \log 3=(x-2)^{\log 5} \\
& x \log 3+\log 3=x \log 5-2 \log 5 \\
& i \log 3
\end{aligned}
$$

(1) take the log of both sides
(2) power rule = bring
(3) expand brackets by multiplying each term with log
(4) move ' x ' terms to are

$$
\begin{array}{rc}
x=5 & -x \log 5 \\
& \frac{x \log 3-x \log 5=-2 \log 5-\log 3}{1} \frac{x(\log 3-\log 5)}{\log 3-\log 5}=\frac{-2 \log 5-\log 3}{\log 3-\log 5} \\
& x=\frac{-2 \log 5-\log 3}{\log 3-\log 5}
\end{array}
$$ with \log

(4) more ' x ' terms to ore
side t constants to other side.
(5) factor x from terms
(6) \div to isolate (solve) for x.
exactanswer.

4decimals. (approximate)

$$
x \approx 8.4520 \quad \text { decimals. (approximate) }
$$

Try \#4 p.229. * \#11 practice Hendent

$$
\begin{gathered}
\text { c) } 3^{x-1}=9 \cdot 10^{x} \\
\log 3^{x-1}=\log \left[9 \cdot 10^{x}\right] \\
\log 3^{x-1}=\log 9+\log 10^{x} \quad 9 \cdot 10^{2} \\
9 \cdot 100 \\
(x-1) \log 3=\log 9+x \log 10 \\
x \log 3-\log 3=\log 9+x \log 10 \\
\downarrow \\
x \log 3-x \log 10=\log 9+\log 3 \\
x(\log 3-\log 10)=\log 9+\log 3 . \\
x=\frac{\log 9+\log 3}{\log 3-\log 16} \\
x=\frac{(\log 9+\log 3)}{(\log 3-1)} \approx-2.7375
\end{gathered}
$$

anothermethod.

$$
\begin{aligned}
& \log _{3} 3^{x-1}=\log _{3}\left[9 \cdot 10^{x}\right] \\
& x-1=\log _{3} 9+\log _{3} 10^{x} \\
& x-1=\log _{2} 3^{2}+x \log _{3} 10 \\
& x-1=2+x \log _{3} 10 \\
& -x \log _{2} \\
& x-x \log _{3} 10=2+1 \\
& x\left(1-\log _{3} 10\right)=3 \\
& x=\frac{3}{1-\log _{3} 10}
\end{aligned}
$$

Solving Log Equations.

Solving Log Equations.
if you have a log on both side with the same (one log on each side), cancel logs t make ar guments equal
Ex $\log _{3}(x+6)-\log _{3}(x+2)=\log _{3} x$
$\begin{aligned} & \text { (1) Log law } \\ & \text { to combine } \\ & \text { into single }\end{aligned} \log _{3}\left(\frac{x+6}{x+2}\right)=\log _{3} x$ \log
(2) single log on both side.

$$
\frac{x+6}{x+2}=x
$$

$$
=\text { cancel }
$$

(3) solve for

$$
x+6=x(x+2)
$$

(4) wite restrictions

$$
\underset{\hookrightarrow}{x+6}=x^{2}+2 x-6
$$ (N DS) acheck solutions.

$$
0=x^{2}+x-6
$$

$$
\left\{\begin{array}{lll}
x+6>0 & x+2>0 & x>0 \\
x>-6 & x>-2 & x>0
\end{array}\right.
$$

final solution $x=2$

If you have one log on one side t terms on other side, change to exponential form to remove log.
(Boor the Base)
Ex 2. $\begin{aligned} \log (x+3) & =-\log x+1 \\ +\log x & \end{aligned}$

$$
\log (x+3)+\log x=1
$$

$$
\hat{x}_{x}^{1}
$$

(1) logs on ore side
(2) combine into single log

$$
\log [(x) x+3)]=1
$$

$$
\log _{10}\left(x^{2}+3 x\right)=1
$$

$$
x^{2}+3 x=10^{1}
$$

$$
x^{2}+3 x-10=0
$$

4) solve for x

$$
(x+5)(x-2)=0
$$

 extramens

$$
x=2
$$

(3) change to expontial form (Bot the base)
(5) check Restrictions.

$$
\begin{aligned}
& x=-3 \text { is extraneous } \\
& \therefore \text { reject } x=-3
\end{aligned}
$$

Using log laws to solve the log equation:

SOLVUNG LOG E@UATIONS:

1. Use the log laws to condense each side of the $=$ sign to a single log or number.

$$
\log _{a} b=\log _{a} c \quad O R \quad \log _{a} b=C
$$

2. A) If one log on each side, cancel the logs.

$$
\begin{aligned}
\log _{a} b & =\log _{a} c \\
\log _{a} b & =\log _{a} c \\
b & =c
\end{aligned}
$$

B) If log on one side and a number on the other side, BOOT the log to change to exponential form.

$$
\begin{gathered}
\log _{a} b=C \\
a^{C}=b
\end{gathered}
$$

3. Solve the equation.
4. Write restrictions or do a check to determine if there are any extraneous roots.

Solving a logarithmic equation by changing to exponential form = BOOT THE LOG

Solve the log equation by combining to a common of base:

Recall solving an exponential by changing to a common base. You can then make the exponents equal and solve.

What if you can't get a common base? Log both side and use the power law to solve.

SOLVUNG EXPONENTLAL EQUATIONS WITH LOGS:

1. Simplify equation by trying to get a single base on both sides of the equal sign.

$$
M^{a+b}=N^{c+d}
$$

Recall: if there is a single common base on each side of the $=$ sign, cancel the bases and make the exponents equal to solve.

$$
\begin{gathered}
M^{a+b}=M^{c+d} \\
\mathbb{M}^{a+b}=\mathbb{C}^{c+d} \\
a+b=c+d
\end{gathered}
$$

2. If you cannot get a common base, take the log of both sides.

$$
\log M^{a+b}=\log N^{c+d}
$$

3. Use the power law to bring the exponent to the front of the log.

$$
\begin{aligned}
\log M^{a+b} & =\log N^{c+d} \\
(a+b) \log M & =(c+d) \log N
\end{aligned}
$$

4. Expand the brackets by distribution, collect the common variables to one side, factor and solve for x .

$$
\begin{aligned}
(a+b)^{2} \log M & =(c+\widehat{d}) \log N \\
a \log M+b \log M & =c \log N+d \log N
\end{aligned}
$$

Exponential Equation with Different Bases

1. Isolate the exponential part of the equation. If there are two exponential parts put one on each side of the equation.
2. Take the logarithm of each side of the equation.
3. Apply power property to rewrite the exponent.
4. Solve for the variable.

Example:

$$
3^{x}-1=4
$$

$$
3^{x}=5
$$

$\log 3^{x}=\log 5$
$x \log 3=\log 5$

$$
x=\frac{\log 5}{\log 3}
$$

Example:

$$
\begin{aligned}
5^{x-1}-2^{x} & =0 \\
5^{x-1} & =2^{x} \\
\log 5^{x-1} & =\log 2^{x} \\
(x-1) \log 5 & =x \log 2 \\
x \log 5-\log 5 & =x \log 2 \\
x \log 5-x \log 2 & =\log 5 \\
x(\log 5-\log 2) & =\log 5 \\
x & =\frac{\log 5}{\log 5-\log 2}
\end{aligned}
$$

```
Solve 6}\mp@subsup{6}{}{x}-15=
```

1. Isolate the exponential expression of the equation.

$$
6^{x}=15
$$

2. Take the common logarithm of each side.

$$
\log 6^{x}=\log 15
$$

3. Use the power property

$$
x \log 6=\log 15
$$

4. Solve for the variable

$$
x=\frac{\log 15}{\log 6}
$$

Exponential Equations with
 Different Bases

Did you say different bases? Now that could be a little more difficult. Let's open the books and give it a try.

	$2^{x+1}=$	$9^{x+1}=27^{x}$
Write each base as a power of the same base	$2^{2 x+1}=\left(2^{3}\right)^{2}$	$\left(3^{2}\right)^{x+1}=\left(3^{3}\right)^{x}$
Simplify the exponents	$2^{x+1}=2^{6}$	$3^{2 x+2}=3^{3 x}$
Drop the bases and set the exponents equal	$x+1=6$	$2 x+2=3 x$
Solve the resulting equation	$x=5$	$x=2$

More Exponential Equations with Different B $\quad \underline{\downarrow}$ Solve for x to the nearest hundredth: $\quad 3^{x}=21$

Just for fun, let's look at that in logarithmic form.

$$
x=\log _{3}
$$

This looks like that change of base stuff.

$$
3^{x}=21
$$

Turn it into a \log equation

$$
\log 3^{x}=\log 21
$$

$\begin{aligned} & \text { Apply the } \\ & \text { logarithm laws }\end{aligned} \times \log 3=\log 21$
$\begin{aligned} & \text { Isolate the } \\ & \text { variable }\end{aligned} \quad x=\frac{\log 21}{\log 3}$
Use your calculator to solve
$x=2.77$

$$
2^{3 x}=7^{2}
$$

$$
\log 2^{3 x}=\log 7^{2}
$$

$$
3 \times \log 2=2 \log 7
$$

$$
x=\frac{2 \log 7}{3 \log 2}
$$

$$
x=1.87
$$

Make sure you use the proper parenthetical formation.

Compound Interest: $A=A\left(1+\frac{r}{n}\right)^{n t}$

General Growth/Decay: $A=A_{0}(b)^{\frac{t}{n}}$

General Earthquake/pH: $I=(10)^{\text {high-low }}$

Word Problems that Contain Exponential
 Download

 Equations with Different Bases That sounds hard. Just looking at that I'm not sure if I'm makes my brain hurt, ready for this.

Growth of a certain strain of bacteria is modeled by the equation $G=A(2.7)^{0.584 t}$ where:
$G=$ final number of bacteria
$A=$ initial number of bacteria $t=$ time (in hours)

In approximately how many hours will 4 bacteria first increase to 2,500 bacteria? Round your answer to the nearest hour.

$$
\begin{array}{rll}
2,500 & =4(2.7)^{0.584 t} & \text { Write the equation } \\
625 & =(2.7)^{0.584 t} & \text { Simplify the equation } \\
\log 625 & =\log (2.7)^{0.584 t} & \text { Turn it into a log equation }
\end{array}
$$

$$
\log 625=0.584+\log (2.7) \text { Apply the logarithm laws }
$$

$$
\frac{\log 625}{0.584 \log 2.7}=\dagger \quad \text { Isolate the variable }
$$

$$
t=11.09844215 \quad \text { Solve with your calculator }
$$

Bacteria will first increase to 2,500 in approximately 12 hours.

Make sure you use the proper parenthetical formation.

Answer the question. the regents exam.

Remember: Don't worry about the words, just look for numbers, formulas, and equations.

Depreciation (the decline in cash value) on a car can be determined by the formula $V=C(1-r)^{\dagger}$, where V is the value of the car after \dagger years, C is the original cost of the car, and r is the rate of depreciation. If a car's cost, when new, is $\$ 15,000$, the rate of depreciation is 30%, and the value of the car now is $\$ 3,000$, how old is the car to the nearest tenth of a year?

JANO6 32

Difficulty level DefCon 3 4 points

The current population of Little Pond, New York is 20,000 . The population is decreasing, as represented by the formula $P=A(1.3)^{-0.234 t}$, where $P=$ final population, $t=$ time, in years, and $A=$ initial population.
What will the population be 3 years from now? Round your answer to the nearest hundred people.

To the nearest tenth of a year, how many years will it take for the population to reach half the present population?
$3,000=15,000(1-.30)^{+}$Write the equation $.2=(1-.30)^{\dagger} \quad$ Simplify the equation $.2=(.7)^{\dagger}$
$\log (.2)=\log (.7)^{\dagger} \quad$ Turn it into a \log equation $\log (.2)=\dagger \log (.7) \quad$ Apply the logarithm laws $\frac{\log (.2)}{\log (7)}=\dagger \quad$ Isolate the variable
$t=4.512338026$
The car is approximately 4.5 years old

Solve with your calculator Make sure you use the proper parenthetical formation.

Answer the question.

Part 1
$P=20,000(1.3)^{-0.234(3)}$ Plug in the given vodownload
$P=16,635.72614 \quad$ Solve with your calculator
The population will be approximately 16,600

Answer the question.

Part b
$10,000=20,000(1.3)^{-0.234+}$ Write the equation $1=2(1.3)^{-0.234+} \quad$ Simplify the equation $\log 1=\log 2(1.3)^{-0.234 t}$ Turn it into a \log equation $\log 1=\log 2+\log (1.3)^{-0.234 t} \quad$ Apply the $\log 1=\log 2-0.234+\log (1.3)$
$\log 1-\log 2=-0.234+\log (1.3) \quad$ Isolate the $\frac{\log 1-\log 2}{-0.234 \log 1.3}=\dagger$ variable
$t=11.2903$
It will take approximately 11.3 years

Solve with your calculator Make sure you use the proper parenthetical formation.
Answer the question.
\qquad

Logarithmic \& Exponential Form

Express each equation in logarithmic form.

1) $2^{3}=r$	2) $a^{7}=128$
3) $u^{\frac{1}{4}}=3$	4) $7^{6}=s$
5) $4^{2}=64$	6) $3^{-d}=\frac{1}{9}$
7) $x^{\frac{1}{6}}=2$	8) $6^{3}=r$

Express each equation in exponential form.

9) $\log _{8} 512=\mathrm{h}$	10) $\quad \log _{\mathrm{a}} 36=2$
11) $\log _{4}\left(\frac{1}{16}\right)=-\mathrm{y}$	12) $\quad \log _{64} \mathrm{p}=\frac{1}{6}$
13) $\log _{\mathrm{x}} 81=4$	14) $\log _{49} 7=\mathrm{f}$
15) $\log _{11} \mathrm{n}=2$	16) $\log _{8} \mathrm{k}=\frac{1}{7}$

15) $\log _{11} n=2$
16) $\log _{8} \mathrm{k}=\frac{1}{2}$

Printable Math Worksheets @ www.mathworksheets4kids.com

Name : \qquad

Score: \qquad

Answer key

Express each equation in logarithmic form.

Express each equation in exponential form.

$4^{-v}=\frac{1}{16}$	$64^{\frac{1}{6}}=\mathrm{p}$
13) $\log _{\mathrm{x}} 81=4$	14) $\log _{49} 7=f$
$\mathrm{x}^{4}=81$	$49^{f}=7$
15) $\log _{11} \mathrm{n}=2$	16) $\log _{8} \mathrm{k}=\frac{1}{2}$
$11^{2}=\mathrm{n}$	$8^{\frac{1}{2}}=\mathrm{k}$

Printable Math Worksheets @ www.mathworksheets4kids.com

Name: \qquad Score : \qquad

Single Logarithm and Expansion

Expand each expression :

1) $\log _{a}\left(\frac{x^{2} y^{3}}{m n}\right)=$ \qquad
2) $\log _{3} \sqrt{5 a^{7}}=$ \qquad
3) $5 \log _{4}\left(\frac{a^{2} b}{n^{3}}\right)=$
4) $\log _{2}\left(\frac{b}{c}\right)^{4}=$ \qquad
5) $4 \log _{a}\left(\frac{p^{6} q^{3}}{r^{2} s}\right)=$ \qquad

Rewrite each expression in single logarithm:

6) $\left(4 \log _{5} x+5 \log _{5} y\right)-\log _{5} z$
7) $\left(3 \log _{7} m+12 \log _{7} n\right)-3 \log _{7} p$
$=$
$=$
8) $\frac{1}{3}\left(4 \log _{2} s+\log _{2} t\right)$
9) $40 \log _{3} t-\left(8 \log _{3} w+16 \log _{3} x\right)$
10) $6\left(\log _{8} 5-\log _{8} m\right)$

Printable Math Worksheets @ www.mathworksheets4kids.com

Name: \qquad Score: \qquad

Answer key

Expand each expression:

1) $\log _{a}\left(\frac{x^{2} y^{3}}{m n}\right)=$ $\left(2 \log _{a} x+3 \log _{a} y\right)-\left(\log _{a} m+\log _{a} n\right)$
2) $\log _{3} \sqrt{5 \mathrm{a}^{7}} \quad=\quad \frac{1}{2}\left(\log _{3} 5+7 \log _{3}\right.$ a)
3) $5 \log _{4}\left(\frac{a^{2} b}{n^{3}}\right)=$
$\left(10 \log _{4} a+5 \log _{4} b\right)-15 \log _{4} n$
4) $\log _{2}\left(\frac{b}{c}\right)^{4}=4\left(\log _{2} b-\log _{2} c\right)$
5) $4 \log _{a}\left(\frac{p^{6} q^{3}}{r^{2} s}\right)=$
$\left(24 \log _{a} p+12 \log _{a} q\right)-\left(8 \log _{a} r+4 \log _{a} s\right)$
6) $4 \log _{a}\left(\frac{p^{6} q^{3}}{r^{2} s}\right)=$

Rewrite each expression in single logarithm:
6) $\left(4 \log _{5} x+5 \log _{5} y\right)-\log _{5} z$

$$
=\quad \log _{5}\left(\frac{x^{4} y^{5}}{z}\right)
$$

7) $\left(3 \log _{7} m+12 \log _{7} n\right)-3 \log _{7} p$

$$
=\quad 3 \log _{7}\left(\frac{m n^{4}}{p}\right)
$$

8) $\frac{1}{3}\left(4 \log _{2} s+\log _{2} t\right)$
$=\quad \log _{2} \sqrt[3]{s^{4} t}$
9) $40 \log _{3} t-\left(8 \log _{3} w+16 \log _{3} x\right)$

$$
=8 \log _{3}\left(\frac{t^{5}}{w x^{2}}\right)
$$

10) $6\left(\log _{8} 5-\log _{8} m\right)$

$$
=\frac{\log _{8}\left(\frac{5}{m}\right)^{6}}{}
$$

Printable Math Worksheets @ www.mathworksheets4kids.com

Name: \qquad Score: \qquad

Logarithm - Solve

Solve for x .
Example 1:

$$
\begin{aligned}
\log _{64} 4 & =x \\
64^{x} & =4 \\
4^{3 x} & =4 \\
x & =\frac{1}{3}
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
\log _{5} x^{\frac{1}{2}} & =2 \\
5^{2} & =x^{\frac{1}{2}} \\
5^{4} & =x \\
x & =625
\end{aligned}
$$

Solve for x .

1) $\log _{4} 2=x$
2) $\log _{x} 64^{\frac{1}{3}}=2$

3) $\log _{6}\left(\frac{1}{6}\right)=x$

4) $\log _{\frac{1}{2}}\left(\frac{1}{8}\right)=x$

5) $\log _{x} 6=\frac{1}{2}$

6) $\log _{4} x=3$

7) $\log _{2}\left(\frac{1}{16}\right)=x$

8) $\log _{x} 3=\frac{1}{4}$

9) $\log _{3} x^{\frac{1}{3}}=2$

10) $\log _{125} 25=x$

Printable Math Worksheets @ www.mathworksheets4kids.com

Name : \qquad Score : \qquad

Logarithmic Equation

Solve for x .
Example 1:

$$
\begin{aligned}
\log _{64} 4 & =x \\
64^{x} & =4 \\
4^{3 x} & =4 \\
x & =1
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
\log _{5} x^{\frac{1}{2}} & =2 \\
5^{2} & =x^{\frac{1}{2}} \\
5^{4} & =x \\
v & -605
\end{aligned}
$$

$$
\begin{aligned}
64^{x} & =4 & 5^{2} & =x^{\overline{2}} \\
4^{3 x} & =4 & 5^{4} & =x \\
x & =\frac{1}{3} & x & =625
\end{aligned}
$$

Solve for x .

Printable Math Worksheets @ www.mathworksheets4kids.com

Name: \qquad Score: \qquad

Logarithm - Solve

Solve for x .
Example 1:

$$
\begin{aligned}
\log _{3}\left(\frac{1}{3}\right) & =x-5 \\
(3)^{x-5} & =\left(\frac{1}{3}\right) \\
(3)^{x-5} & =3^{-1} \\
x & =4
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
\log _{8}(2 x)^{3} & =2 \\
8^{2} & =(2 x)^{3} \\
\left(8^{2}\right)^{\frac{1}{3}} & =2 x \\
4 & =2 x \\
x & =\mathbf{2}
\end{aligned}
$$

Solve for x .

3) $\log _{32}\left(\frac{1}{4}\right)=x-1$

5) $\log _{\frac{1}{32}}\left(\frac{x}{8}\right)=\frac{1}{5}$

7) $\log _{x+1} 16=4$

9) $\log _{9}(x-1)=3$

2) $\log _{3 x} 64=2$

4) $\log _{3}\left(\frac{1}{9}\right)=2 x$

6) $\log _{25} 625=2 x+3$

8) $\log _{6}(4 x)^{\frac{1}{2}}=2$

10) $\log _{2 x} 2^{-4}=2$

Name: \qquad Score : \qquad

Answer key

Solve for x .

Example 1:

$$
\begin{aligned}
\log _{3}\left(\frac{1}{3}\right) & =x-5 \\
(3)^{x-5} & =\left(\frac{1}{3}\right) \\
(3)^{x-5} & =3^{-1} \\
x & =4
\end{aligned}
$$

Solve for x .

1) $\log _{36} 6=x+3$

2) $\log _{32}\left(\frac{1}{4}\right)=x-1$

3) $\log _{\frac{1}{32}}\left(\frac{x}{8}\right)=\frac{1}{5}$

4) $\log _{x+1} 16=4$

5) $\log _{9}(x-1)=3$

6) $\log _{3 x} 64=2$

7) $\log _{3}\left(\frac{1}{9}\right)=2 x$

8) $\log _{25} 625=2 \mathrm{x}+3$

9) $\log _{6}(4 x)^{\frac{1}{2}}=2$

10) $\log _{2 \mathrm{x}} 2^{-4}=2$

Printable Math Worksheets @ www.mathworksheets4kids.com

Name : \qquad Score: \qquad

Logarithm - Solve

Solve for x .
Example 1:

$$
\begin{aligned}
\log _{64} 4 & =x+2 \\
(64)^{x+2} & =4 \\
4^{3 x+6} & =4 \\
3 x+6 & =1 \\
x & =-\frac{5}{3}
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
\log _{4} 4 x^{\frac{1}{2}} & =2 \\
4^{2} & =(4 x)^{\frac{1}{2}} \\
4^{4} & =4 x \\
x & =64
\end{aligned}
$$

Solve for x .

3) $\log _{2}\left(\frac{1}{4}\right)=2 x+1$

5) $\log _{\frac{1}{3}}\left(\frac{1}{9}\right)=4 x$

7) $\log _{x-1}(16)=\frac{1}{2}$

2) $\log _{x+2}(27)=3$

4) $\log _{4}\left(\frac{1}{16}\right)=\frac{x}{2}$

6) $\log _{5 x} 8=3$

8) $\log _{3}(x+4)^{\frac{1}{3}}=1$

9) $2 \log _{4}(x-2)=4$

$x=\square$
10) $\log _{128} 2=x+3$
$x=\square$

Printable Math Worksheets @ www.mathworksheets4kids.com

Name: \qquad Score : \qquad

Answer key

Solve for x .
Example 1:

$$
\begin{aligned}
\log _{64} 4 & =x+2 \\
(64)^{x+2} & =4 \\
4^{3 x+6} & =4 \\
3 x+6 & =1 \\
x & =-\frac{5}{3}
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
\log _{4} 4 x^{\frac{1}{2}} & =2 \\
4^{2} & =(4 x)^{\frac{1}{2}} \\
4^{4} & =4 x \\
x & =64
\end{aligned}
$$

Solve for x .

1) $\log _{4} 2=x-5$

2) $\log _{2}\left(\frac{1}{4}\right)=2 x+1$

3) $\log _{\frac{1}{3}}\left(\frac{1}{9}\right)=4 x$
$x=\frac{1}{2}$
4) $\log _{x+2}(27)=3$

5) $\log _{4}\left(\frac{1}{16}\right)=\frac{x}{2}$

6) $\log _{5 x} 8=3$
$x=\frac{2}{5}$

$$
x=\frac{1}{2}
$$

7) $\log _{x-1}(16)=\frac{1}{2}$

$$
x=257
$$

9) $2 \log _{4}(x-2)=4$

$$
x=18
$$

$$
x=\frac{2}{5}
$$

8) $\log _{3}(x+4)^{\frac{1}{3}}=1$

$$
x=23
$$

10) $\log _{128} 2=x+3$

$$
x=-\frac{20}{7}
$$

Printable Math Worksheets @ www.mathworksheets4kids.com

Name: \qquad Score: \qquad
Logarithmic Equation
Solve for \mathbf{x}.

1) $2 \log _{3} x=\log _{3}(12 x-36)$
2) $\log _{2}(x-11)+\log _{2}(x-2)=\log _{2} 10$

$$
x=\square
$$

$$
x=\square
$$

3) $\log _{7}\left(\frac{x+8}{x+6}\right)=2$
4) $\log _{4}(x-5)+\log _{4}(x+5)=\log _{4} 24$

$$
x=\square
$$

$$
x=\square
$$

Printable Math Worksheets @ www.mathworksheets4kids.com

Name: \qquad Score: \qquad

Answer key

Solve for \mathbf{x}.

1) $2 \log _{3} x=\log _{3}(12 x-36)$
$x=6$
2) $\log _{7}\left(\frac{x+8}{x+6}\right)=2$
3) $\log _{2}(x-11)+\log _{2}(x-2)=\log _{2} 10$
$x=12$
4) $\log _{4}(x-5)+\log _{4}(x+5)=\log _{4} 24$

5) $\log _{3}(x+2)+\log _{3}(x-3)=\log _{3} 14$

$x=7$
6) $2 \log _{8} x=\log _{8}(7 x-12)$
$x=4,3$
7) $2=\log _{4}\left(\frac{x+7}{x+5}\right)$

Printable Math Worksheets @ www.mathworksheets4kids.com

