Tuesday, Mar. 12th
Plan For Todars
30°

1. Any questions from Chapter 5?

- Hand-in Chapter 5 Project - Part A (Desmos) \& B
- Do Unit 3 Exam ~1-1.5hr
- Do Unit 3 Exam ~1-1.5hr180°
210°.2. Intro to Chapter 4: The Unit Circe \& Trigonometry- 6.1s Trigonometric Functions
-6.28 Trig Functions of Acute Angles
-6.3s Trig Functions of General \& Special Angles
- 6.4: Graphing Basic Trig Functions
- 6.5: Applications of Periodic Functions

3. Do Practice Questions from Workbook

$$
\begin{gathered}
\text { Degrees } \rightarrow \text { radians } \\
\times \text { by } \frac{\pi}{180} \\
\text { Radians } \rightarrow \text { degrees } \\
\times \text { by } \frac{180}{\pi} \\
\hline
\end{gathered}
$$

Plan Going Forwards

2. Intro to Chapter 4: The Unit Circe \& Trigonometry
6.1s Trigonometric Functions

6.2s Trig Functions of Acute Angles	
6.3s Trig Functions of General \& Special Angles	Degrees \rightarrow radians \times by $\frac{\pi}{180}$ 6.4: Graphing Basic Trig Functions
6.5: Applications of Periodic Functions	
3. Do Practice Questions from Workbook	Radians \rightarrow degrees \times by $\frac{180}{\pi}$

\sin	30°	45°	60°
\cos	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
\cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
\tan	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

HRVE PN RWESOME RND PRODUCTIVE SPRING BRERMI

1. Finish going through 6.1-6.3 practice question in textbook.

* 6.1-6.3 CHECRーUN QUIZ ON TUESDAY. APR. 2ND

2. We will finish Chapter 6 (Trigonometry I) on the Thursday after Spring Break and start Chapter 7 (Trig II).

* CHAPTER G PROJECT (PART A HANDOUT \& PART B UN DESMOS) DUE TUESDAY, APR. 9TH
- https://student.desmos.com/activitybuilder/student-greeting/65f089483694a5f29f2b2f77
* CHAPTER 6 QUIZ ON TUESDAY. APR. ©TH

UNIT 3 EXAM RGWRITE ON TUGSDAY, APRIL 2ND

- Start 12:30pm
- 12 Multiple Choice \& 20 marks on the Written
- ~1 hour
- Closed-book - no notes

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at anurita.weebly.com after class.
Anurita Dhiman = adhiman@sd35.bc.ca

This is a Unit circle because it has a radius of one unit. Notice the points on the x-axis and y-axis (intercepts are exactly 1 unit away from the origin.

Divide this circle up into degrees in multiples of $30^{\circ}, 45^{\circ}$ and 60° degrees. (recall a circle has 360°)
$6.10 .251-252$

$\begin{aligned} \text { coterminal angles } \rightarrow & \rightarrow \text { other angles that have the same terminal } \\ & \text { arm location }\end{aligned}$ $\rightarrow \theta \pm 360^{\circ}$ to determine coterminal angles.
\rightarrow geveral $=\theta \pm 360^{\circ} \mathrm{n}, n \in I$

$$
180^{\circ}=\pi
$$

A circle can also be divided into radians which are multiples and fractions of pi (π). If $180^{\circ}=$ π radians and $360^{\circ}=2 \pi$ radians, try to divide up the circle into radians.

$$
30^{\circ}=\frac{\pi}{6}, 45^{\circ}=\frac{\pi}{4}, 60^{\circ}=\frac{\pi}{3}
$$

Convert: $:$ Degrees \rightarrow Radians $\times \frac{\pi}{180^{\circ}} \quad \begin{array}{ll}\text { Coterminal: } \\ \theta \pm 2 \pi n,\end{array}$

$$
\text { Radians } \longrightarrow \text { Degrees } \times \frac{180^{\circ}}{\pi} \quad \begin{array}{|c|c|}
\substack{n \in I} \\
\text { \#dt.uns. }
\end{array}
$$

6.1 ex: $\theta=510^{\circ}$
(1) Draw angle position (staridard position)

$$
\begin{aligned}
& 510-360 \\
& =150^{\circ}
\end{aligned}
$$

(2) coterminal angle.

$$
\theta_{1}=510^{\circ}-360^{\circ} \rightarrow 150^{\circ}
$$

(d) Coterrminn …

$$
\begin{aligned}
& \theta_{1}=510^{\circ}-360^{\circ} \rightarrow 150^{\circ} \\
& \theta_{2}=510^{\circ}+360^{\circ} \rightarrow 870^{\circ} \\
& \theta_{3}=510^{\circ}-360^{\circ}(2) \rightarrow-210^{\circ} \\
& n=2
\end{aligned}
$$

(3)

$$
\begin{aligned}
& 510^{\circ} \rightarrow \text { radians } \\
& \begin{aligned}
510^{\circ} \times \frac{\pi}{180^{\circ}} & =\frac{51 \phi \pi}{18 \phi} \\
& =\frac{17 \pi}{6} \text { (radians) }
\end{aligned}
\end{aligned}
$$

Arc Length p. 254.

$$
s=r \theta
$$

$$
s=\operatorname{arc} \text { length }
$$

or "a"
$r=$ radius of circle $\theta=$ angle in radians

$$
\sin \theta=\frac{\text { opp }}{\text { hyp }} \quad \cos \theta=\frac{a d_{j}}{h_{y p}} \quad \tan \theta=\frac{o p p}{a d j}
$$

reciprocals.

$$
\csc \theta=\frac{h_{y p}}{\text { opp }} \quad \sec \theta=\frac{h_{y p}}{\text { adj }} \quad \cot \theta=\frac{\text { adj }}{\text { opp }} .
$$

$$
\begin{aligned}
& E_{x}: \csc \theta=\frac{3^{2}}{2} \text { hpp } \\
& \begin{array}{c}
C R \\
\sin \theta=\frac{2}{3} \leftarrow \leftarrow_{\text {Mp }}
\end{array}
\end{aligned}
$$

6.1 Trig Functions

What is a Unit Circle and how do you divide it into degrees and radians?

This is a Unit circle because it has a radius of one unit. Notice the points on the x-axis and y-axis (intercepts are exactly 1 unit away from the origin.

Divide this circle up into degrees in multiples of $30^{\circ}, 45^{\circ}$ and 60° degrees. (recall a circle has 360°)

Converting between Degrees and Radians:

$$
\underbrace{3.14159 \ldots}_{\pi \text { radians }=180^{\circ}} \text { radians }=180^{\circ}
$$

shutterstock.com • 1920424754

Your Turn

Draw each angle in standard position. Change each degree measure to radians and each radian measure to degrees. Give answers as both exact and approximate measures (if necessary) to the nearest hundredth of a unit.
a) -270°
b) 150°
c) $\frac{7 \pi}{6}$
d) -1.2

$$
\begin{aligned}
& \text { a) }-270^{\circ} \times \frac{\pi}{.180^{\circ}}=-\frac{3 \pi}{2} \\
& \text { b) } 1.50^{\circ} \times \frac{\pi}{180}=\frac{5 \pi}{6} \\
& \text { c) } \frac{2 \pi}{5} \times \frac{1300^{\circ}}{\boxed{11}}=210^{\circ} \\
& \text { d) } \begin{aligned}
-1.2 \times \frac{x}{x} \frac{180^{\circ}}{\pi} j \div & =\frac{-1.2 \times 180}{\pi} \\
& =-68.8^{\circ}
\end{aligned}
\end{aligned}
$$

Graphing Angles in Standard Position:

Standard Position

MB
1.12 Angles in Standard Position

Kuta Software - Infinite Algebra 2
Angles and Angle Measure Name

Date
\square
Convert each degree measure into radians and each radian measure into degrees.

1) 325°
2) 60°
3) $-\frac{4 \pi}{3}$
4) $\frac{23 \pi}{12}$
5) 570°
6) -315°

Convert each decimal degree measure into degrees-minutes-seconds and each

 degrees-minutes-seconds into decimal degrees.7) 128.77°
8) $232^{\circ} 7^{\circ} 57^{\prime \prime}$
9) $-154^{\circ} 47^{\prime} 42^{\prime \prime}$
10) -0.9225°

Find the measure of each angle.
11)

12)

13)

14)

15)

Draw an angle with the given measure in standard position.
17) 280°
18) 710°

19) -120°

21) $-\frac{10 \pi}{3}$

State the quadrant in which the terminal side of each angle lies.
23) -509°
24) $-\frac{5 \pi}{6}$

20) $\frac{11 \pi}{6}$

22) 440°

$-1-$

Reference Angle = acute angle to the x-axis (never written as a negative number since it is a measure of distance and does not include direction)

Coterminal Angles = angles of different measurements which end at the same terminal arm (determined by adding and subtracting rotations around the circle)

Finding Arc Length:

Arc Length of a Circle

when angle in degrees.
If θ is measured in degrees then

If θ is measured in radians then

$$
\text { arc length }=\theta r
$$

Kuta Software - Infinite Algebra 2
Name \qquad
Date \qquad Period
Arc Length and Sector Area Find the length of each arc. Round your answers to the nearest tenth.
1)

3)

5) $r=18 \mathrm{~cm}, \theta=60^{\circ}$
7) $r=9 \mathrm{ft}, \theta=\frac{7 \pi}{4}$

Find the length of each arc. Do not round.
9)

11)

2)

4)

6) $r=16 \mathrm{~m}, \theta=75^{\circ}$
8) $r=14 \mathrm{ft}, \theta=\frac{19 \pi}{12}$
10)

12)

Find the area of each sector. Round your answers to the nearest tenth. 13)

15)

16)

Find the area of each sector. Do not round.
17)
18)

19)

21) $r=10 \mathrm{mi}, \theta=\frac{\pi}{2}$
22) $r=12 \mathrm{yd}, \theta=\frac{5 \pi}{3}$
23) $r=7 \mathrm{~km}, \theta=60^{\circ}$
24) $r=7 \mathrm{mi}, \theta=225^{\circ}$

Kuta Software - Infinite Algebra 2

Arc Length and Sector Area

Date

 Period
Find the length of each arc. Round your answers to the nearest tenth.

60.5 ft

5) $r=18 \mathrm{~cm}, \theta=60^{\circ}$ 18.8 cm

61.3 ft
$r=9 \mathrm{ft}, \theta=\frac{7 \pi}{4}$
49.5 ft
4)

6.8 in
6) $r=16 \mathrm{~m}, \theta=75^{\circ}$ 20.9 m
8) $r=14 \mathrm{ft}, \theta=\frac{19 \pi}{12}$ 69.6 ft

Find the length of each arc. Do not round.

$14 \pi \mathrm{~cm}$
11)

10)

$\frac{95 \pi}{6} \mathrm{ft}$
12)

Find the area of each sector. Round your answers to the nearest tenth.
13)

14)

16)

Find the area of each sector. Do not round.
17)

$\frac{512 \pi}{3} \mathrm{ft}^{2}$
19)

21) $r=10 \mathrm{mi}, \theta=\frac{\pi}{2}$
$25 \pi \mathrm{mi}^{2}$
23) $r=7 \mathrm{~km}, \theta=60^{\circ}$ $\frac{49 \pi}{6} \mathrm{~km}^{2}$
18)

20)

22) $r=12 \mathrm{yd}, \theta=\frac{5 \pi}{3}$
$120 \pi \mathrm{yd}^{2}$
24) $r=7 \mathrm{mi}, \theta=225^{\circ}$ $\frac{245 \pi}{8} \mathrm{mi}^{2}$

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com

6.2 Trig Functions of Acute Angles (SOH CAH TOA)

Equation of a Unit Circle \& Coordinates in a Unit Circle

Review of Trig Ratios:

These definitions are only useful for acute angles.

$$
\begin{aligned}
& \sin \theta=\frac{\text { length of side opposite } \theta}{\text { length of hypotenuse }} \\
& \cos \theta=\frac{\text { length of side adjacent } \theta}{\text { length of hypotenuse }}
\end{aligned}
$$

$$
\tan \theta=\frac{\text { length of side opposite } \theta}{\text { length of side adjacent } \theta}
$$

Signs of trig ratios in each quadrant:

All Students Take Calculus

Point $\mathrm{P}(x, y)$ is the point on the terminal arm of angle θ, an angle in standard position, that intersects a circle.

$$
\begin{array}{ll}
\sin \theta=\frac{\boldsymbol{y}}{\boldsymbol{r}} & \csc \theta=\frac{\boldsymbol{r}}{\boldsymbol{y}} \\
\cos \boldsymbol{\theta}=\frac{\boldsymbol{x}}{\boldsymbol{r}} & \sec \theta=\frac{r}{x}
\end{array}
$$

$$
\tan \theta=\frac{\boldsymbol{y}}{\boldsymbol{x}} \quad \cot \theta=\frac{x}{y}
$$

The three reciprocal ratios are defined as follows:

$$
\text { cosecant }=\frac{1}{\operatorname{sine}} \quad \text { secant }=\frac{1}{\text { cosine }} \quad \text { cotangent }=\frac{1}{\text { tangent }}
$$

Finding the Trig Ratios of an Angle in Standard Position
The point $\mathrm{P}(-2,3)$ is on the terminal arm of θ in standard position.
Does point $\mathbf{P}(-2,3)$ lie on the unit circle? $N o$, the radius of a unit circle is 1 .

Using Degree Measure

$$
\begin{aligned}
& \sin \left(90^{\circ}-\theta\right)=\cos \theta \\
& \csc \left(90^{\circ}-\theta\right)=\sec \theta
\end{aligned}
$$

$\cos \left(90^{\circ}-\theta\right)=\sin \theta$
$\sec \left(\theta 0^{\circ}-\theta\right)=\csc \theta$
$\tan \left(90^{\circ}-\theta\right)=\cot \theta$
$\cot \left(90^{\circ}-\theta\right)=\tan \theta$

Using Radian Measure

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \\
& \csc \left(\frac{\pi}{2}-\theta\right)=\sec \theta
\end{aligned}
$$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta \\
& \sec \left(\frac{\pi}{2}-\theta\right)=\csc \theta
\end{aligned}
$$

$$
\tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta
$$

$$
\cot \left(\frac{\pi}{2}-\theta\right)=\tan \theta
$$

