
Tuesday, Apr. 2nd

Plan For Today:

- 1. Any questions about anything?
 - ◆ Review 6.1 & part of 6.2 with Check-in quiz
- 2. Continue Chapter 6: The Unit Circe & Trigonometry
 - ◆ 6.1: Trigonometric Functions
 - 6.2: Trig Functions of Acute Angles
 - 6.3: Trig Functions of General & Special Angles
 - 6.4: Graphing Basic Trig Functions
 - 6.5: Applications of Periodic Functions
- 3. Do Practice Questions from Workbook

4. Do Unit 3 Exponents and logs Rewrite at 12:30pm

	30°	45°	60°
sin	1	1	$\sqrt{3}$
	2	$\sqrt{2}$	$\frac{\sqrt{c}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
	2	7/2	
tan	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

Plan Going Forward:

- 1. Finish going through 6.1-6.4 practice questions in textbook.
 - * 6.1-6.4 CHECK-IN QUIZ ON THURSDAY, APRIL 4TH
- 2. We will finish Chapter 6 (Trigonometry I) on the Thursday and start Chapter 7 (Trig II).
 - * Chapter 6 project (part a handout & part b in desmos) due tuesday, apr. 9th
 - https://student.desmos.com/activitybuilder/student-greeting/65f089483694a5f29f2b2f77
 - * Chapter 6 Quiz on Tuesday, apr. 9th

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at <u>anurita.weebly.com</u> after class.

Anurita Dhiman = adhiman@sd35.bc.ca

Tuesday, Apr. 2nd In-Class Notes

Apr. 2, 2024

Name: KEY

TOTAL = /9 marks

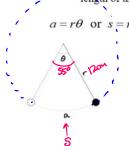
Check-in Quiz Section 6.1-6.2: Radian, Degrees, Angles, Arc Length, & Trig Ratios

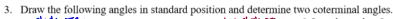
Complete the following questions SHOWING ALL WORK and steps where applicable.

180° = 97

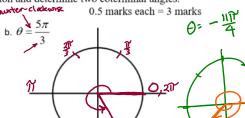
1. Convert the following angles to degrees or radians.

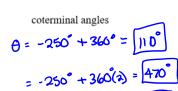
0.5 marks each = 2 marks


b.
$$\theta = \frac{2\pi}{3} \times \frac{180^{60}}{3} = 120^{7}$$


c.
$$\theta = -460^\circ \times \frac{11^\circ}{140^\circ} = \begin{bmatrix} -2311^\circ \\ 9 \end{bmatrix}$$

$$d. \theta = -\frac{7\pi}{x_1} \times \frac{45}{x_1} = -315^{\circ}$$


2. A pendulum swings in a frictionless environment forever. If the angle it makes through its swing is 55° and the length of the chain holding the pendulum is 12cm, what is the length of the arc that is produced by the swing of the pendulum?



a. $\theta = -250^\circ$

coterminal angles
$$511 + 311 + 31 = 51 + 611 - 1111$$

$$511 - 611 = -13$$

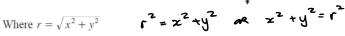
$$511 - 611 = -13$$

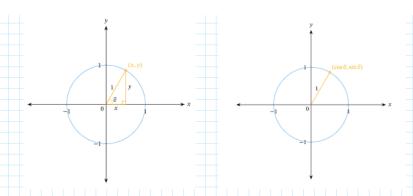
$$511 - 611 = -13$$

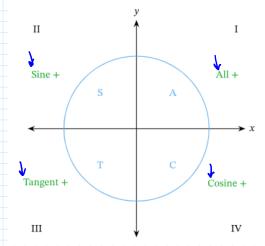
or
$$-250^\circ - 360^\circ = \frac{-60^\circ}{-60^\circ}$$

in general = any coterninal $\Rightarrow -250^\circ + 360^\circ$ n, nEI

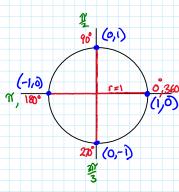
4. Given that $\cos \theta = \frac{5}{6}$ in Quadrant IV, draw the triangle, determine the hypothenuse of


the triangle and determine the exact value of the other trig ratios. O is always next to x-oxis! CAH Sec $\theta = \frac{6}{5}$ QW SmA = - F SOH $CSC\Theta = -\frac{6}{\sqrt{11}} \rightarrow -\frac{6}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{11}} = -\frac{6\sqrt{11}}{11}$ Cationalized. tant = - 5 $\cot \theta = -\frac{5}{\sqrt{11}} \Rightarrow -\frac{5}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{11}} = -\frac{5\sqrt{11}}{11} \text{ portional position.}$ TOA




$$\sin \theta = \frac{y}{r}$$
 $\csc \theta = \frac{r}{y}$

$$\cos \theta = \frac{x}{r}$$
 $\sec \theta = \frac{r}{x}$

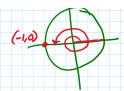

$$\tan \theta = \frac{y}{x}$$
 $\cot \theta = \frac{x}{y}$

Quadrant Angles. 6.3

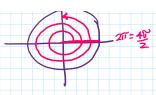
$$\cos\theta = \frac{z}{r} = x \Rightarrow \cos\theta = x \quad \sec\theta = \frac{r^{-1}}{z} = \frac{1}{z}$$

$$\frac{1}{1000}$$
, $\frac{1}{100}$ $\frac{$

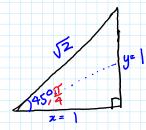
$$tan\theta = \frac{y}{x} \rightarrow cot\theta = \frac{z}{y}$$

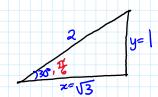

cost = x sect = \frac{1}{2}

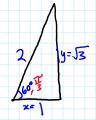
sint = y \quad \text{csct} = \frac{1}{2}

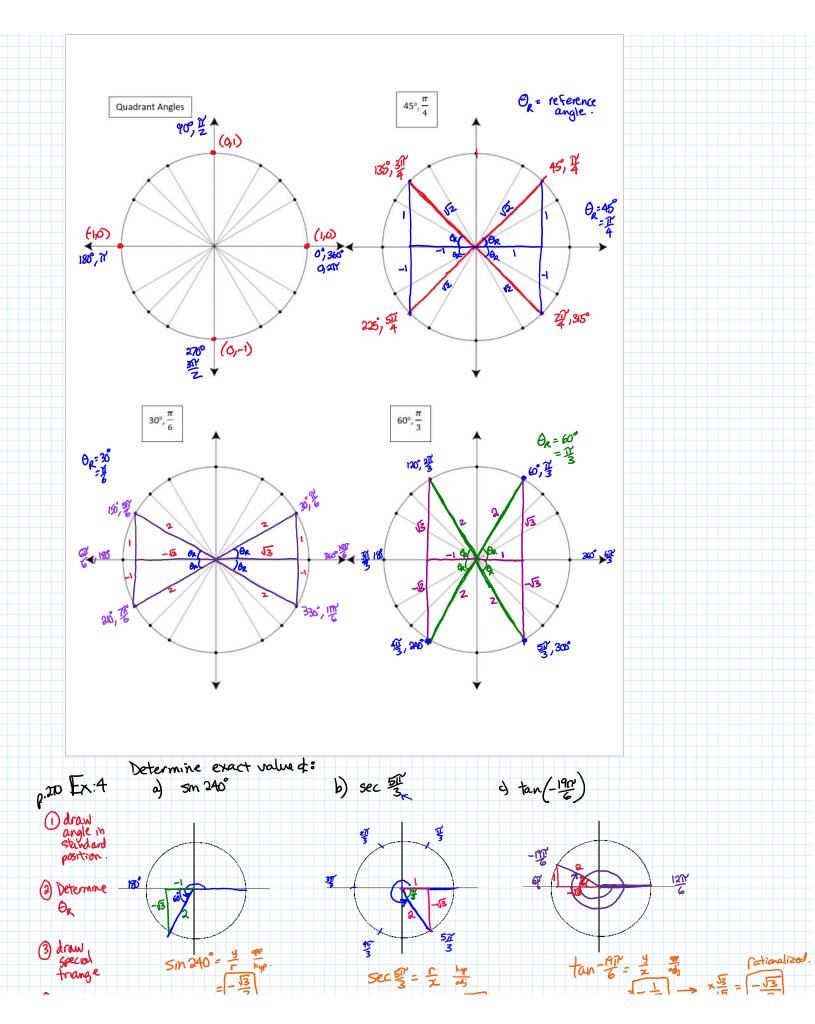

\tant = \frac{1}{2} \quad \text{cott} = \frac{1}{2}.

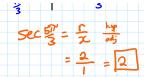
$$ExI$$
 a) $cos0° = 1$


b)
$$tan 6 \pi = \frac{y}{z} \Rightarrow \frac{0}{1}$$
 c) $csc \frac{9 \pi}{2} = \frac{1}{1} = 1$

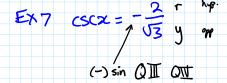


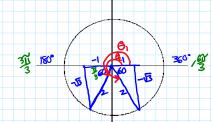



Special Angles 30-45-60 76-14-13



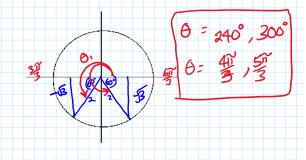
Reference Angle: acute angle next to x-axis.



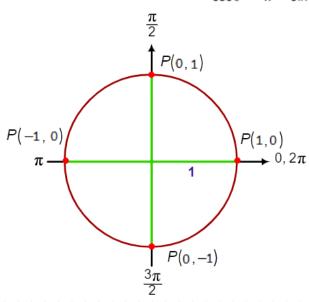

a use triangle to answer question

Finding O instead

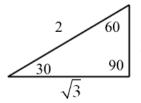
ex: Solve:
$$\sin \theta = -\sqrt{3}$$
 within $0 \le \theta < 2\pi$ solutions with in or $\cos \theta < 360^{\circ}$ one rotation of a circle



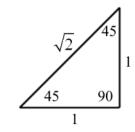
3 Draw the angles . with matching reference angle .

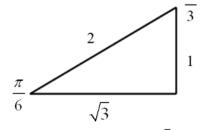


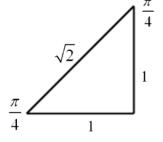
6.3 Trig Functions of General & Special Angles

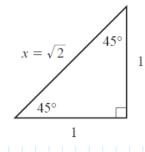

Quadrant Angles

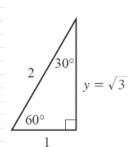
$$\cos\theta = x \quad \sin\theta = y \quad \tan\theta = \frac{y}{x}$$

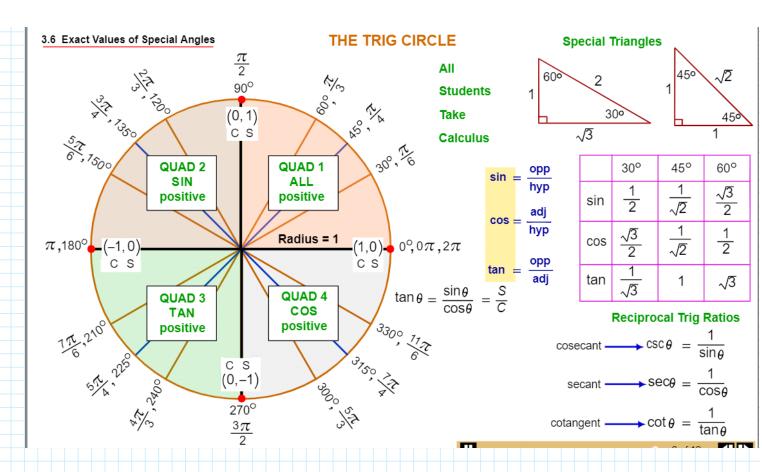



30-45-60 Special Triangles


Also, Two special triangles 30, 60, 90 triangle




45, 45, 90 triangle





Reference Angle

Definition of a Reference Angle

For angle θ in standard position, the reference angle is the positive acute angle θ' that is formed with the terminal side of θ and the x-axis.

A reference angle is $0^{\circ} \le \theta' \le 90^{\circ}$ or $0 \le \theta' \le \frac{\pi}{2}$

https://www.purposegames.com/game/15c86db5b3

https://www.purposegames.com/game/trig-values-level-2-quiz

Solving Trig Equations Algebraically:

Solving Trig Equations

- When solving trig equations, you will need to get the <u>trig function</u> isolated (by itself).
- Ex: $2\sin x = 1$ Divide both sides by 2

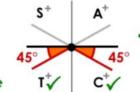
 $\sin x = \frac{1}{2}$ Use unit circle or inverse function on calculator to find angle

We will limit our solutions to $[0, 2\pi)$, and all answers must be in **RADIANS** (π form)

$$30^{\circ} \text{ and } 150^{\circ} = \frac{\pi}{6} \text{ and } \frac{5\pi}{6}$$

Ch6 Page 10

NOTE


Solving Trigonometric Equations using Quadrants

Trigonometric equations can also be solved algebraically using quadrants.

Example

Solve
$$\sqrt{2} \sin x + 1 = 0$$

for $0^{\circ} \leqslant x \leqslant 360^{\circ}$
 $\sin x = \frac{1}{\sqrt{2}}$
sin negative

 solutions are in the 3rd and 4th quadrants

acute angle:

$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$$

$$x = 180^{\circ} + 45^{\circ}$$
 or $x = 360^{\circ} - 45^{\circ}$
= 225° = 315°