Thursday, Apr. 4th

Plan For Todays

1. Any questions about anything?

- 6.2-6.3 theck-in quiz

2. Continue Chapter 6: The Unit Circe \& Trigonometry

- 6.1: Trigonometric Functions
- 6.2: Trig Functions of Acute Angles
- 6.3: Trig Functions of General \& Special Angles
-6.48 Graphing Basic Trig Functions
-6.5z Applications of Periodic Functions

3. Do Practice Questions from Workbook

a. $f(b(x+c))+d$

Plan Going Forwards

1. Finish going through Ch6 practice questions in textbook.

CMAPTER 6 PROJECT (PART A HANDOUT \& PART B UN DESMOS) DUE TUESDAR, APR. 9TH

- https://student.desmos.com/activitybuilder/student-greeting/65f089483694a5f29f2b2f77

资 CHAPTER 6 @URZ ON TUESDAY. APR. OTH
2. Tuesday after the test, we will start Ch7 Trig Identities (7.1-7.2)

* CHAPTER 7 PROJECT DUE THURSDAY, APR. 18TH

资 CHAPTER 7 @UIZ ON THURSDAY. APR. 18TH

UnIT 4 EXAM ON TUESDAY, APRIL 23RD - LAST CLASS...

- Start 12:30pm
- 12 Multiple Choice \& 20 marks on the Written
- ~1 hour
- Closed-book - no notes
- Rewrite on Thursday, Apr. 25th

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at anurita.weebly.com after class. Anurita Dhiman = adhiman@sd35.bc.ca
\qquad / 7 marks

Check-in Quiz Section 6.2-6.3:

Trig Ratios and Special Angles

Complete the following questions SHOWING ALL WORK and steps where applicable.

1. Determine the exact value of each of the following (no calculator) and show the location on the unit circle provided:
(1 mark)

2. Given the point, $P(-2,3 \sqrt{5})$, is on the unit circle terminal arm for angle θ, determine the value of all six trigonometric ratios. (3 marks)

Page $\mathbf{2}$ of $\mathbf{2}$

The Unit Circle

6.4 Graph Trig Functions.

$$
y=\sin x \quad y=\cos x
$$

distance above gives news period.
t below midline

$$
P=2 \pi \times \frac{1}{L} \rightarrow \frac{2 \pi}{h}
$$

distance above gives new period.
t below midlino

$$
\begin{aligned}
& p=2 \pi \times \frac{1}{b} \rightarrow \frac{2 \pi}{b} \\
& p=360^{\circ} \times \frac{1}{b} \rightarrow \frac{360^{\circ}}{b}
\end{aligned}
$$

Ex:1 $\quad y=5 \sin \frac{1}{2} x \quad$ gragh $-4 r \leq x \leq 4 \pi$.

Ex2. ${\underset{y y y}{c}}_{y=1}^{y}=-6 \cos 2\left(x-\frac{\pi}{6}\right)-3 \quad 2$ cycles.

$$
\begin{aligned}
& \text { amp }=6 \\
& \text { perrod }=2 \pi \times \frac{1}{2}=\pi \\
& \text { phase }=\frac{\pi}{6} \text { rght. } \\
& \text { shift } \\
& \text { midlino }=-3 \\
& \text { (vertical 3doum....and } \\
& \text { displacement) }
\end{aligned}
$$

6.5 Applications.
p. 288 Ex 3 Fervis Whed.

20 $43 t$
p. 288 Ex 3 reins woven.
a) radius $=20 \mathrm{~m}$
rotation $=60 \mathrm{~s}$
enter at lowest point $=\frac{\sqrt{3}}{3 m}$ $\cos h=$ height $t=$ time
b) $h=30 \mathrm{~m} \rightarrow$ find t

amp. 20

$$
d=23
$$

$$
p=60 \rightarrow b=\frac{2 \pi}{p}
$$

$$
h(t)=
$$

$$
b=\frac{2 \pi}{60} \text { or } \frac{\pi}{30}
$$

$$
h=-20 \cos \frac{\pi}{30} t+23
$$

p.s. - cos.

Explore Learning Gizmo: (5 min per day) https://tinyurl.com/yckn3e3p

Sine Function
Domain: $(-\infty, \infty) \quad$ Range: $[-1,1]$
y-intercept: 0
x-intercepts: $n \pi, n \in \mathbb{Z}$
Continuity: continuous on ($-\infty, \infty$)
Symmetry: origin (odd function)
Extrema: maximum of 1 at
$x=\frac{\pi}{2}+2 n \pi, n \in \mathbb{Z}$
minimum of -1 at

$$
x=\frac{3 \pi}{2}+2 n \pi, n \in \mathbb{Z}
$$

End Behavior: $\lim _{x \rightarrow-\infty} \sin x$ and $\lim _{x \rightarrow \infty} \sin x$ do not exist.
Oscillation: between -1 and 1

Cosine Function
Domain: $\quad(-\infty, \infty)$
Range: $[-1,1]$
y-intercept: 1
x-intercepts: $\frac{\pi}{2} n, n \in \mathbb{Z}$
Continuity: continuous on $(-\infty, \infty)$
Symmetry: y-axis (even function)
Extrema: maximum of 1 at $x=2 n \pi$,
$n \in \mathbb{Z}$
minimum of -1 at $x=\pi+2 n \pi$,
$n \in \mathbb{Z}$

End Behavior: $\lim _{x \rightarrow \infty} \cos x$ and $\lim _{x \rightarrow \infty} \cos x$ do not exist.
Oscillation: between-1 and 1

Term	Definition/Explanation
Amplitude	Half the vertical distance from the maximum heightto the minimum height of the function.
Interval	The domain of one cycle; written as $\left[x_{b}, x_{e}\right]$, where x_{b} is the beginning and x_{e} is the end.
Period	The horizontal length of one repeating pattern of the function.
Phase Shift or Horizontal Shift	The horizontal distance a function is moved.
Vertical Shift	The vertical distance a function is moved.
Interval	The horizontal starting point and ending point of one complete period of a cyclical trigonometricfunction.

KeyConcept Phase Shift

Words \quad The phase shift of the functions $y=a \sin b(\theta-h)$,
$y=a \cos b(\theta-h)$, and $y=a \tan b(\theta-h)$ is h, where $b>0$.

If $h>0$, the shift is h units to the right.
Examples

$$
\begin{aligned}
& y=\cos \left(\theta-90^{\circ}\right) \\
& y=\tan \left(\theta+30^{\circ}\right)
\end{aligned}
$$

The phase shift is 90° to the right.
The phase shift is 30° to the left.

If $h<0$, the shift is $|h|$ units to the left.

KeyConcept Vertical Shift

Words \quad The vertical shift of the functions $y=a \sin b \theta+k$,
$y=a \cos b \theta+k$, and $y=a \tan b \theta+k$ is k.

Models

If $k>0$, the shift is k units up.
Examples

$$
\begin{array}{ll}
y=\sin \theta+4 & \text { The vertical shift is } 4 \text { units up. } \\
y=\tan \theta-3 & \text { The vertical shift is } 3 \text { units down. }
\end{array}
$$

Transform Sine and Cosine Graphs

Graphing Transformations on the Sine and Cosine Function

Steps:

1. Make sure the equation is written in standard transformation form:

- $y=a \sin b(x-c)+d$ and $y=a \cos b(x-c)+d$

2. List all characteristics (in radians or degrees depending on the question):

- Amplitude = a
- Vertical Displacement = d
- Period = 2pi/b
- Phase Shift = c

3. Determine the Midline, Maximum and Minimum for the y-axis scale based on the amplitude and vertical displacement.

Note: the same results occur for the function $y=\sin x$

Note: the same results occur for the function $\mathrm{y}=\cos \mathrm{x}$
4. Determine the period and phase shift for the x-axis scale.

- Use $4,8,12,16$ squares on the grid to equal the length of the period
- Divide the period by the number of squares to determine the length of one square then label the x-axis to easily find the phase shift

5. Place the first point at the beginning of the cycle at the phase shift.

- On the midline for sine
- On the max point for +cosine
- On the min point for -cosine

6. Divide the number of square you gave for the length of the period by 4, then count that many squares for each max, midline and min point for one complete cycle.
7. Continue the pattern to graph at least $\mathbf{2}$ cycles.
$y=A \sin [B(x-C)]+D$

Vertical shift is D

The same applies for the Cosine Function.
For the Tangent Function, the period is $\frac{\pi}{B}$
6.5 Applications of Periodic Functions

Rational Periods

\diamond x-axis scale is divided into integers, not into radians or degree units.
\diamond RECALL:

Modelling Real-life Period Functions
Bouncing Mass on a Spring: https://www.explorelearning.com/index.cfm? method=cResource.dspView\&ResourcelD=421

Tides:
https://www.explorelearning.com/index.cfm? method=cResource.dspView\&ResourceID=368
pendulum sinusoidal curve animation

