Plan For Todays

1. Questions from Chapter Ch7?

楽 Hand-in 7.1-7.2 Check-in Quiz
粦 Hand-in Ch7 Project (Part B) - Part A Desmos

* Do Ch7 Test

2. Start Chapter 8: Logarithmic Functions
\checkmark 8.18 Understanding Logarithms
\checkmark 8.2: Transformations of Logarithmic Functions

* 8.3: Laws of Logarithms
* 8.4: Logarithmic \& Exponential Functions

3. Work on Practice Questions from Workbook
$b^{x}=a \Leftrightarrow \log _{b} a=x$

Argument
$a=x$
base

Plan Going Forwards

1. Finish going through $8.1-8.2$ and chapter practice questions in workbook and start working on review handout.

* B.1-8.2 CHECR-IN QUIZ ON TUESDAY. NON. TTH

2. We will continue Ch8 Logarithms on Tuesday.

- CHAPVER 8 PROJECT DUE TUESDAY. NOV. 2TST
 - UNNT 3 EXAM ON TUESDAY. NOV. 2TST

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at anurita.weebly.com after class.
Anurita Dhiman = adhiman@sd35.bc.ca

Thursday, Nov. 2nd In-Class Notes

Chapter 8 Logarithmic Functions

8.1 Understanding Logarithms

KEY IDEAS

- A logarithm is the exponent to which a fixed base must be raised to obtain a specific value.

Example: $5^{3}=125$. The logarithm of 125 is the exponent that must be applied to base 5 to obtain 125. In this example, the logarithm is $3: \log _{5} 125=3$.

- Equations in exponential form can be written in logarithmic form and vice versa. b/c log equals Exponential Form Logarithmic Form $y=\log _{c} x \quad$ experent $x=c^{y}$

$$
y=\log _{c} x \longrightarrow \text { exponent base argument }
$$

- The inverse of the exponential function $y=c^{x}, c>0, c \neq 1$, is $x=c^{y}$ or, in logarithmic form, $y=\log _{c} x$. Conversely, the inverse of the logarithmic function $y=\log _{c} x, c>0, c \neq 1$, is $x=\log _{c} y$ or, in exponential form, $y=c^{x}$.
- The graphs of an exponential function and its inverse logarithmic function are reflections of each other in the line $y=x$.
- For the logarithmic function $y=\log _{c} x, c>0, c \neq 1$,
- the domain is $\{x \mid x>0, x \in \mathrm{R}\}$
- the range is $\{y \mid y \in \mathrm{R}\}$
- the x-intercept is 1
- the vertical asymptote is $x=0$, or the y-axis

- A common logarithm has base 10. It is not necessary to write the base for common logarithms: $\log _{10} x=\log x$

Working Example 1: Graph the Inverse of an Exponential Function x

The graph of $y=2^{x}$ is shown at right. State the inverse of the function. Then, sketch the graph of the inverse function and identify the following characteristics of the graph:
domain and range

- x-intercept, if it exists
- y-intercept, if it exists
- the equation of any asymptotes

$D \cdot\{x \mid x \in R\}$.
$R:\{y \mid y>0, y \in \mathbb{R}\}$
no x-int
asymptote:
asymptote:

y-int: $(0,1)$

$$
y=0
$$

260 MHR • Chapter 8 978-0-07-073891-1

Solution
 $$
\text { Recall: } x=c^{y} \rightarrow y=\log _{c} x
$$

The inverse of $y=2^{x}$ is $x=2^{y}$.
In logarithmic form, the inverse function is $y=\log _{2} x . \rightarrow y=\log _{2} x$ inverse of $y=2^{x}$
The inverse of a function is its reflection in the line $y=x$. To graph the inverse, sketch this reflection. Alternatively, interchange each pair of coordinates on the graph of the function to obtain coordinates on the inverse graph.
 graph of the inverse.
$(0,1)$

Evaluate each expression.
a) $\log _{2} 32$
b) $\log _{100} 10$
c) $\log _{3} \sqrt{27}$
d) $\log _{4} x=3$
e) $\log _{x} 125=3$
f) $\log 0.01=x$

Solution

a) This logarithmic expression asks which exponent is applied to base 2 to produce a result of 32 . Since $2^{5}=32$, the value of the logarithmic expression is $5 \quad \log _{2} 32=\log _{2}\left(2^{5}\right)$
b) Since $100^{\frac{1}{2}}=10$, the value of $\log _{100} 10$ is $\frac{1}{2} \quad \log _{100} 10=\log _{100} 100^{\frac{1}{2}}: \frac{1}{2}=5$
c) Written as a power of 3,27 is equal to \qquad and $\sqrt{ }$ is written as an exponent of poor
In exponential form $\log x=3$. This means that $\left.\log _{3} \sqrt{27}=\frac{3}{2} \rightarrow \log _{3} \sqrt{27}=\log _{3} 27^{\frac{1}{2}} \rightarrow \log _{3}\left(3^{3}\right)^{\frac{1}{2}}\right)^{\text {pour t }} \log _{3} 3^{\frac{3}{2}}=\frac{3}{2}$
d) In exponential form, $\log _{4} x=3$ is equivalent to

e) In exponential form, $\log _{x} 125=3$ is equivalent to \qquad $=\sqrt[3]{125}$ - So $x=$ 5
f) 0.01 can be written at $\frac{1}{100}$, which is 10^{-2}. So, $\log 0.01=-2, \quad \log 0.01=\log 10^{-2} \rightarrow-2$

Working Example 4: An Application of Logarithmic Functions

The intensity of sound is measured in decibels (dB). The level of a sound, L, in decibels, is given by $L=10 \log \left(\frac{I}{I_{0}}\right)$, where I is the intensity of the sound and I_{0} is the faintest sound detectable to humans. The sound level inside a particular car is 39 dB when it is idling, and 80 dB at full throttle. How many times more intense is the sound at full throttle?

Solution

Let I_{i} be the intensity of the sound at idle and I_{f} be the intensity at full throttle.
$39=10 \log \left(\frac{I_{i}}{I_{0}}\right)$ or $3.9=\log \left(\frac{I_{i}}{I_{0}}\right)$

$$
80=10 \log \left(\frac{I_{f}}{I_{0}}\right) \text { or } 8=
$$

\qquad
Rewrite each expression in exponential form.
$\frac{I_{i}}{I_{0}}=$ \qquad

$$
\frac{I_{f}}{I_{0}}=
$$

\qquad
Then, multiply by I_{0} to obtain $I_{i}=I_{0} 10^{3.9}$ and $I_{f}=$ \qquad
To compare the intensities, divide I_{f} by I_{i}.
$\frac{I_{f}}{I_{i}}=\frac{I_{0} 10 \square}{I_{0} 10 \square}$
I_{f}
\qquad
The I_{0} terms divide out, leaving $10 \square=$ \qquad
Therefore, the sound at full throttle is about 12589 times as intense as the sound at idle.

D- See pages 375-379 of Pre-Calculus 12 for more examples.

262 MHR • Chapter 8 978-0-07-073891-1

8.1: Understanding Logarithms

What is a log?
A logarithm is an exponent.

$$
\log _{b}(a)=c \Longleftrightarrow b^{c}=a
$$

Logarithmic Form Exponential Form

Both forms use the same base.
The logarithm is equal to the exponent

Changing between log and exponent form:

Convert each to logarithmic form.
a) $\underset{\substack{2_{i}^{m}=n \\ \text { base }}}{\log _{2} n=m}$

Mare:
b) $0^{10-1}=1000 \rightarrow \log 1000=x-1 \quad$ p. $263 \# 2+\#_{3}$
c) $(x+1)=3^{z+1} \rightarrow \log _{3}(x+1)=2+1$

Convert each to exponential form.
a) $\log _{2} x=3 \rightarrow x=2^{3}$
b) $\log _{x-1} 3=4 \longrightarrow(x-1)^{4}=3$
c) $\log _{x}(x+2)=2 \longrightarrow x^{2}=x+2$

Evaluating and solving logarithms by changing to exponential form.
But there is a short-cut in some cases!

Try solving these:
a) $\log _{x} 27=3 \rightarrow \sqrt[3]{x^{3}}=\sqrt[3]{27}$

$$
x=3
$$

Note:
log have Extra \#4-7 p. 264
base is also restricted
b) $\log _{2}(2 x-5)=4 \rightarrow 2 x-5=2^{4} \quad C>0, c \neq 1$

$$
\begin{aligned}
& 2 x-5=16 \\
& \longrightarrow+5
\end{aligned}
$$

$\frac{2 x}{2}=\frac{21}{2} \quad \&$ Restrictions
c) $\log _{(x+1)}(2 x-1)=2$

$$
x=\frac{21}{2}
$$

$$
2 x-5>0
$$

$$
x>\frac{5}{2}
$$

$$
\frac{(x+1)^{2}}{(x+1)(x+1)}=2 x-1
$$

$$
\begin{aligned}
x^{2}+2 x+1 & =2 x-1 \\
-2 x+1 & \rightleftarrows
\end{aligned}
$$

$$
x^{2}+2=0
$$

$$
\sqrt{x^{2}}=\sqrt{-2}
$$

$x=\varnothing$ undefined
$x=$ no solution (no real roots)

- Change of Base Law $=\log _{a} x=\frac{\log x}{\log a}$

Try to evaluate these logs:

$$
\begin{aligned}
\log _{7}(10) & =\frac{\log (10)}{\log (7)} \\
& \approx \frac{1}{0.8451} \\
& \approx 1.183
\end{aligned}
$$

a) $\log _{2} 64$
b) $\log _{4} 0.0625$
c) $\log _{\frac{1}{2}} 32$
d) $\log _{1.2} 223.87$

Logarithms have restrictions (non-permissible values = NPVs)

Graphing a logarithmic function is the same as graphing the inverse of the exponential function with the same base.

Recall: to graph the inverse, switch the x and y for each coordinate and plot (the graph reflects over the line $y=x$ and the domain and range also inverse)

Ex. Graph the function $y=\log _{2} x$

1. First determine the points on the function $y=2^{x}$

x	y
-2	$\frac{1}{4}$
-1	$\frac{1}{2}$
0	1
1	2
2	4

$$
\begin{aligned}
\text { Step(1) }= & \text { graph exponential } \\
& \text { function with the } \\
& \text { same base as } \log \\
& \text { function }
\end{aligned}
$$

3. Graph the points

Step (3) Graph the inverse to toget $y=\log _{2} x$ graph.

Try graphing the following in the same steps as above:
a) $y=\log _{3} x$
(base 3)
b) $y=\log _{\left(\frac{1}{2}\right)} x \quad$ (base $\frac{1}{2}$)

Step
$11-0^{x}$
Step 2
(1),x (2) inverse

Stepl

$$
y=3^{x}
$$

$$
\begin{array}{l|ll}
x & y \\
\hline-2 & \frac{1}{9} & 3^{-2} \rightarrow \frac{1}{3^{2}} \\
-1 & 1 / 3 & \\
0 & 1 & 3^{0} \rightarrow 1 \\
1 & 3 & \\
2 & 9 &
\end{array}
$$

Step 2 inverse

$$
\Rightarrow y=\log _{3} x
$$

x	y
$1 / 9$	-2
$1 / 3$	-1
1	0
3	1
9	2
asymptote	
$x=0$	

Steg $3 *$ invers asymptote

$$
\{x \mid x>0, x \in R\}
$$

$$
\{y \mid y \in R\}
$$

$$
\text { asyngtote: } x=0
$$

(VA)
(1)

$$
y=\frac{1^{2}}{}
$$

x	y		
-3	8	$\left(\frac{1}{2}\right)^{-3}=2^{3}$	x
-2	4		y
-1	2	4	-2
0	1	2	-1
1	$1 / 2$	1	0
2	$1 / 4$	$1 / 2$	1
		$1 / 4$	2

(2) inverse

$$
y=\log _{\frac{2}{2}} x
$$

(3) Graph.

$$
V A: x=0
$$

$$
\{x \mid x>0, x \in R\}
$$

$\{y \mid y \in \mathbb{R}\}$
a symptote x

$$
\begin{aligned}
& \text { ymptote } x=0 \\
& V A
\end{aligned}
$$

