Plan For Todays

1．Questions from 8.1 \＆basic Log graph？
楽 Do 8．1 Check－in Quiz
2．Continue Chapter 8：Logarithmic Functions
\checkmark 8．1：Understanding Logarithms
＊＊8．28 Transformations of Logarithmic Functions
准 8.3 Laws of Logarithms
楽 8．4：Logarithmic \＆Exponential Functions
3．Work on Practice Questions from Workbook

Plan Going Forwards

LOG RULES
 $\log _{a}(m n)=\log _{a} m+\log _{a} n$
 $\log _{a} a=\frac{\log _{b} a}{\log _{b} c} \quad \log _{a} a=1$
 $\log _{a} m^{n}=n \log _{a} m$
 $\log _{2} a=1, \log _{2} 1=0$
 Iff $\quad \log _{\mathrm{a}} \mathrm{N}=\mathrm{x} \quad \log _{\mathrm{c}} \mathrm{a}=\log _{\mathrm{e}} 10 . \log _{10} \mathrm{a}$
 $$
\boldsymbol{\operatorname { l o g }}_{a^{3}} \mathbf{n}^{\alpha}=\frac{\alpha}{\alpha} \boldsymbol{\operatorname { l o g }}_{a} \mathbf{n}
$$
 $$
\begin{aligned} & \text { Then } a^{x}=N \\ & \text { Also } a^{\log _{a} N}=N \end{aligned} \quad \log _{a} b=\frac{1}{\log _{b} a}
$$
 $$
a^{\log _{c} b}=b^{\log _{c} a}(a, b, c>0, c \neq 1)
$$
 $$
\begin{gathered} \log _{a}\left(\frac{m}{n}\right)=\log _{a} m-\log _{a} n \quad a^{\log _{a} n=\frac{1}{m} \log _{a} n} \\ \log _{\mathrm{a}} b \cdot \log _{\mathrm{b}} a=1 \quad a^{\log _{a} m}=m \\ \text { STUDYPIVOT.Com } \end{gathered}
$$

1．Finish going through 8．2－8．3 and chapter practice questions in workbook and start working on review handout．
－8．2－8．3 CHECR－IN QUIZ ON THURSDAY．NOV．OTH
2．We will finish Ch8 Logarithms and Review Ch7 \＆ 8 on Thursday after long weekend for the Unit 3 Exam．
－CHECR－IN＠UIZ ON THURSDAY．NOV．16TH
－EHAPTER 8 PROJECT DUE TUESDAY，NOV．2IST（TRY FOR THURSDAY，NOV．16TH2）
－UNIT 3 EXAM On TUGSDAY，NOV．21ST
Please let me know if you have any questions or concerns about your progress in this course．The notes from today will be posted at anurita．weebly．com after class． Anurita Dhiman＝adhiman＠sd35．bc．ca

Review

1. For each exponential graph below, sketch the inverse function and state the domain, range, x-intercept, and equation of the vertical asymptote. Then, write the equation of the inverse
function.
a)

b)

$$
y=\log _{3} x
$$

$$
\longleftarrow \quad \begin{array}{l|l}
x & y \\
\hline 1 / 9 & -2 \\
1 / 3 & -1 \\
1 & 3^{-2}=\frac{1}{9} \\
3 & 3^{-1}=\frac{1}{3} \\
9 & 2
\end{array}
$$

c) $16^{\frac{1}{2}}=4$
d) $8^{-2}=\frac{1}{64}$

$$
\begin{aligned}
& y=\log _{4} x \\
& \text { (1) } y=4^{x} \xrightarrow{\text { ines }} \text { (2) } y=\log _{4} x \\
& \begin{array}{c|cccc|c}
x & y \\
\hline-2 & 1 / 16 & 4^{-2}=\frac{1}{4^{2}}=\frac{1}{16} & x & y \\
\hline-1 & 1 / 4 & 4^{-1}=\frac{1}{4} & & 1 / 4 & -1 \\
0 & 1 & & 1 & 0 \\
1 & 4 & & 4 & 1 \\
2 & 16 & & 16 & 2
\end{array}
\end{aligned}
$$

e) $10^{-2}=0.01$
f) $27^{\frac{2}{3}}=9$
g) $12^{x}=2 y$
h) $\log _{2}(y-1)=2 x-5$

978-0-07-073891-1 Pre-Calculus 12 Student Workbook • MHR 2
3. Express in exponential form.
a) $\log _{2} 32=5$
(b) $\log _{8} 512=3$

$$
8^{3}=512
$$

c) $\log _{5} 625=4$
d) $\log 1000=3$
b) $10^{2 x}=1000000$
c) $\log _{2} \swarrow_{x=4}^{x>0}$

g) $\begin{aligned} & \log _{x} 81=4 \\ & \uparrow_{\boldsymbol{x}}>0, \boldsymbol{x} \neq 1\end{aligned}$
i) $\log _{x} \frac{1}{25}=-2$

$$
\begin{array}{ll}
\text { h) } \log _{x} 6=\frac{1}{2} & x^{\frac{1}{2}}=6 \\
x>0, x \neq 1 & (\sqrt{x})^{2}=(6)^{2}
\end{array}
$$

$$
\text { i) } \log _{\mu} \frac{1}{64}=-3 \quad x=36
$$

8.2 Transformations

$$
y=\log _{c} x \longrightarrow y=a \log _{c}(b(x-h))+k c_{r}
$$

$$
E x: y=-2 \log _{3}(3(x+4))+3
$$

(1) Base Function
(2) Stretchs

$$
y=\log _{3} x
$$

reetrections
(5) 4 left

HC $\frac{1}{3}, V E 2$ 3 up

LOGARITHMIC FUNCTIONS - Transformations

Transformations $y=\log x$

Transformation	$f(x)$ Notation	Examples
Horizontal Translation Graph shifts left or right.	$f(x-h)$	$\begin{aligned} & g(x)=\log (x-3) \rightarrow 3 \text { units right } \\ & g(x)=\log (x+4) \rightarrow 4 \text { units left } \end{aligned}$
Vertical Translation Graph shifts up or down.	$f(x)+k$	$\begin{aligned} & g(x)=\log x+4 \rightarrow 4 \text { units up } \\ & g(x)=\log x-5 \rightarrow 5 \text { units down } \end{aligned}$
Reflection Graph flips over x-axis.	$-f(x)$	$g(x)=-\log x \rightarrow$ over x -axis
Reflection Graph flips over y-axis.	$f(-x)$	$g(x)=\log (-x) \rightarrow$ over y-axis
Horizontal Shrink Graph shrinks toward y-axis.	$f(a x), a>1$	$g(x)=\log 2 x \rightarrow \text { shrink by } \frac{1}{2}$
Horizontal Stretch Graph stretches away from y-axis.	$f(a x), 0<a<1$	$g(x)=\log \frac{x}{2} \rightarrow \text { stretch by } 2$
Vertical Stretch Graph stretches away from x-axis.	a $\cdot f(x), a>1$	$g(x)=2 \cdot \log x \rightarrow$ stretch by 2
Vertical Shrink Graph shrinks toward x -axis.	a. $f(x), 0<a<1$	$g(x)=\frac{1}{2} \log x \rightarrow \text { shrink by } \frac{1}{2}$

Vertical Stretch $g(x)=a \log _{b}(x), a>1$	Vertical Compression $h(x)=\frac{1}{a} \log _{b}(x), a>1$
 -The asymptote remains $x=0$. -The x-intercept remains $(1,0)$. -The domain remains $(0, \infty)$. -The range remains $(-\infty, \infty)$.	 -The asymptote remains $x=0$. -The x-intercept remains $(1,0)$. -The domain remains $(0, \infty)$. -The range remains $(-\infty, \infty)$.

Reflection about the x-axis $g(x)=\log _{b}(x), b>1$	Reflection about the y-axis $h(x)=\log _{b}(-x), b>1$
 -The reflected function is decreasing as x moves from zero to infinity. -The asymptote remains $x=0$. -The x-intercept remains (1,0). -The key point changes to $\left(b^{-1}, 1\right)$ -The domain remains $(0, \infty)$. -The range remains $(-\infty, \infty)$.	 -The reflected function is decreasing as x moves from negative infinity to zero. -The asymptote remains $x=0$. -The x-intercept changes to ($-1,0$). -The key point changes to $(-b, 1)$ -The domain changes to $(-\infty, 0)$. -The range remains $(-\infty, \infty)$.

Shift left $g(x)=\log _{b}(x+c)$	Shift right $h(x)=\log _{b}(x-c)$
 -The asymptote changes to $x=-c$. -The domain changes to $(-c, \infty)$. -The range remains $(-\infty, \infty)$.	

8.2 Transformations of Logarithmic Functions

KEY IDEAS

- To represent real-life situations, you may need to transform the basic logarithmic function, $y=\log _{b} x$, by applying reflections, stretches, and translations. These transformations should be performed in the same manner as those applied to any other function.
- The effects of the parameters a, b, h, and k in $y=a \log _{c}(b(x-h))+k$ on the graph of the logarithmic function $y=\log _{c} x$ are described in the table.

Parameter	Effect
a	Vertically stretch by a factor of $\|a\|$ about the x-axis. Reflect in the x-axis if $a<0$.
b	Horizontally stretch by a factor of $\left\|\frac{1}{b}\right\|$ about the y-axis. Reflect in the y-axis if $b<0$.
h	Horizontally translate h units. \quad vertical asymptote $\quad x=h$
k	Vertically translate k units.

- Only parameter h changes the vertical asymptote and the domain. None of the parameters changes the range.

Working Example 1: Translations of a Logarithmic Function

a) Sketch the graph of $y=\log _{4}(x+4)-5$.
b) State the

- domain and range
- x-intercept
- y-intercept
- equation of the asymptote

Solution

a) Begin with the graph of $y=\log _{4} x$. Identify key points, such as $(1,0),(4,1)$, and $(16,2)$. Identify the transformations.
The graph moves \qquad 4 units to the left and units \qquad down

In mapping notation, the key points are transformed as follows:
Key points: (x, y) maps to $(x-4, y-5)$
$\left\{\begin{array}{|c|c|c|}\hline(x, y) & \rightarrow & (x-4, y-5) \\ \hline(1,0) & \rightarrow & (-3,-5) \\ \hline(4,1) & \rightarrow & (0,-4) \\ \hline(16,2) & \rightarrow & (12,-3) \\ \hline\end{array}\right.$

\sqrt{v} required to d raw asymptote A always dashed

b) The domain of $y=\log _{4} x$ is $\{x \mid x>0, x \in \in \mathbb{R}\}$ Since the graph is translated 4 units left, this changes the domain to $\{x \mid x>-4, x \in \mathrm{R}\}$. The range of the transformed function is not changed and is $\{y \mid y \in \mathbb{R}\}$
To determine the x-intercept, set $\log _{4}(x+4) \underset{\longrightarrow+5}{-5=0}$. Then, solve for x. \& Recoil: $\log _{4}(x+4)=5$
$x+4=\frac{4^{5}}{-4}$ (write in exponential form)
Boor
Rose
To confirm that the y-intercept is -4 , substitute $x=0$.
$y=\log _{4}(0+4)-5$
$y=\log _{4} 4^{\prime}-5 \quad 1-5$
$y=-4$
The graph of $y=\log _{4} x$ has a vertical asymptote at $x=0$. Since the graph is translated

The graph of $y=\log _{4} x$ has a vertical asymptote at $x=0$. Since the graph is translated 4 units left, the asymptote is translated as well.
Thus, $y=\log _{4}(x+4)-5$ has a vertical asymptote at $x=-4$

268 MHR • Chapter 8 978-0-07-073891-1

Working Example 2: Reflections and Stretches of Logarithmic Functions

Sketch the graph of each of the following. State any invariant points.
a) $y=2 \log _{9} x$
b) $y=-\log _{2} 4 x$
Solution \quad VEg
a) The coefficient of 2 indicates a vertical stretch by a factor of 2 Choose key points on the graph of $y=\log _{9} x$. Then, use mapping notation to show the transformation of those points.

1	9	$q^{\prime}=9$
2	$8 f$	$q^{2}=81$

$y=-\log _{2}(4 x)$

b) The transformations are a reflection in $x-a x i s$ and a horizontal stretch by a factor of $\frac{1}{4}$. Using key points on $y=\log _{2} x$, use mapping notation to express the HC $\frac{1}{4}$ transformations.
Key points: (x, y) maps to $\left(\frac{1}{4} x,-y\right)$

(x, y)	\rightarrow	$\left(\frac{1}{4} x,-y\right)$
$(1,0)$	\rightarrow	$\left(\frac{1}{4}, 0\right)$
$(2,1)$	\rightarrow	$\left(\frac{1}{2},-1\right)$
$(4,2)$	\rightarrow	$(1,-2)$
\ldots		$/$

There are no invariant points on the graph.

\uparrow
 for Horizontal transfor motions
978-0-07-073891-1 Pre-Calculus 12 Student Workbook • MHR 269

Working Example 3: Combine Transformations

Sketch the graph of $y=-2 \log _{3}(x-3)+5$.

Solution

First, apply all stretches and reflections to $y=\log _{3} x$, in any order. Then, apply translations. Consider the effect of a reflection in the x-axis and a vertical stretch by a factor of 2 on the key points $(1,0),(3,1)$, and $(9,2)$.

Key points: (x, y) maps to $(x,-2 y)$

$y=\log _{3} x$	$y=-2 \log _{3} x$
$(1,0)$	$(1,0)$
$(3,1)$	$(3,-2)$
$(9,2)$	

Since the graph is translated 3 units right and 5 units up, apply these translations to the points.
Key points: (x, y) maps to $(x+3, y+5)$

$y=-2 \log _{3} x$	$y=-2 \log _{3}(x-3)+5$
$(1,0)$	$(4,5)$
$(3,-2)$	
$(9,-4)$	

 base function

DD See pages 384-389 of Pre-Calculus 12 for more examples.

$$
\text { TRY \#3 p } 271 \quad t \# 7,8
$$

270 MHR • Chapter 8 978-0-07-073891-1

Log Graphs Practice
Name:
Teacher : Score :
Date :

Graphing Logarithms

Give the domain and range of each function, then graph.

1) $y=\log _{9}(x+4)+3$

2) $y=\log _{7}(x-4)-2$

3) $y=\log _{4}(x-2)-5$

Name:
Teacher :
Score :
Date :

Graphing Logarithms

Give the domain and range of each function, then graph.
5) $y=\log _{5}(4 x-5)-2$

6) $y=\log (4 x-3)-4$

7) $y=\log _{8}(2 x+5)+3$

8) $y=\log _{7}(4 x+4)-3$

Name:

Teacher :

Score :

Date :

Graphing Logarithms

Give the domain and range of each function, then graph.

1) $y=\log _{9}(x+4)+3$

2) $y=\log _{5}(x-2)+5$

3) $y=\log _{7}(x-4)-2$

4) $y=\log _{4}(x-2)-5$

Math-Aids.Com

```
Name :
Teacher:

\section*{Graphing Logarithms}

Give the domain and range of each function, then graph.
5) \(y=\log _{5}(4 x-5)-2 \quad\) Domain: \(x>\frac{5}{4}\)

6) \(y=\log (4 x-3)-4\)

7) \(y=\log _{8}(2 x+5)+3 \quad\) Domain: \(x>\frac{-5}{2}\)

8) \(y=\log _{7}(4 x+4)-3 \quad\) Domain: \(x>-1\)


\section*{Rule of Logarithms}


Rule 1: \(\log _{b}(M \cdot N)=\log _{b} M+\log _{b} N\)
Rule 2: \(\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N\)
Rule 3: \(\log _{b}\left(M^{k}\right)=k \cdot \log _{b} M\)
Rule 4: \(\log _{b}(1)=0\)
Rule 5: \(\log _{b}(b)=1\)
Rule 6: \(\log _{b}\left(b^{k}\right)=k\)
Rule 7: \(b^{\log _{b}(k)}=k\)

\section*{Where:}
\(b>O\) but \(b \neq 1\), and \(M, N\), and \(k\) are real numbers but M and N must be positive!
(C)chilimath.com
- The Law of Logarithms for Powers (Power Law) \(=\log _{a} x^{n}=n \log _{a} x\)
- The Law of Logarithms for Roots \(=\log _{x} \sqrt[n]{x^{m}}=\log _{a} x^{\frac{m}{n}}=\frac{m}{n} \log _{a} x\)
- The Multiplication Law of Logs (Product Law) \(=\log _{a} x y=\log _{a} x+\log _{a} y\)
- The Division Law of Logs (Quotient Law) \(=\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y\)
\[
\begin{aligned}
& 5 \log _{3}(x)+2 \log _{3}(4 \mathrm{x})-\log _{3}\left(8 \mathrm{x}^{5}\right)=\log _{3}\left(\mathrm{x}^{5}\right)+\log _{3}\left((4 \mathrm{x})^{2}\right)-\log _{3}\left(8 \mathrm{x}^{5}\right) \\
& =\log _{3}\left(x^{5}\right)+\log _{3}\left(16 x^{2}\right)-\log _{3}\left(8 x^{5}\right) \\
& =\log _{3}\left(x^{5} \cdot 16 x^{2}\right)-\log _{3}\left(8 x^{5}\right) \\
& =\log _{3}\left(16 x^{7}\right)-\log _{3}\left(8 x^{5}\right) \\
& =\log _{3}\left(\frac{16 x^{7}}{8 x^{5}}\right) \\
& 5 \log _{3}(\mathrm{x})+2 \log _{3}(4 \mathrm{x})-\log _{3}\left(8 \mathrm{x}^{5}\right)=\log _{3}\left(2 \mathrm{x}^{2}\right) \\
& \log _{6}\left(\frac{36 m^{3}}{\sqrt{n}}\right)=\log _{6}\left(36 m^{3}\right)-\log _{6}(\sqrt{n}) \\
& =\log _{6}(36)+\log _{6}\left(m^{3}\right)-\log _{6}\left(n^{\frac{1}{2}}\right) \\
& =\log _{6}\left(6^{2}\right)+3 \log _{6}(m)-\frac{1}{2} \log _{6}(n) \\
& =2 \log _{6}(6)+3 \log _{6}(m)-\frac{1}{2} \log _{6}(n) \text { Rule } 5 \Rightarrow \log _{6}(6)=1 \\
& =2(1)+3 \log _{6}(m)-\frac{1}{2} \log _{6}(n) \\
& \log _{6}\left(\frac{36 m^{3}}{\sqrt{n}}\right)=2+3 \log _{6}(m)-\frac{1}{2} \log _{6}(n) \\
& 2 \log _{5}(\mathrm{~m})+3 \log _{5}(\mathrm{k})-8 \log _{5}(\mathrm{y})=\log _{5}\left(\mathrm{~m}^{2}\right)+\log _{5}\left(\mathrm{k}^{3}\right)-\log _{5}\left(\mathrm{y}^{8}\right) \\
& =\log _{5}\left(\mathrm{~m}^{2} \cdot \mathrm{k}^{3}\right)-\log _{5}\left(\mathrm{y}^{8}\right) \\
& =\log _{5}\left(m^{2} k^{3}\right)-\log _{5}\left(y^{8}\right) \\
& 2 \log _{5}(\mathrm{~m})+3 \log _{5}(\mathrm{k})-8 \log _{5}(\mathrm{y})=\log _{5}\left(\frac{\mathrm{~m}^{2} \mathrm{k}^{3}}{\mathrm{y}^{8}}\right)
\end{aligned}
\]
\[
\begin{aligned}
3+\frac{1}{2} \log _{4}(x)+\frac{1}{2} \log _{4}(y) & =3+\log _{4}\left(x^{\frac{1}{2}}\right)+\log _{4}\left(y^{\frac{1}{2}}\right) \\
& =3+\log _{4}\left(x^{\frac{1}{2}} \cdot y^{\frac{1}{2}}\right) \\
& =3+\log _{4}(\sqrt{x} \cdot \sqrt{y}) \\
& =3+\log _{4}(\sqrt{x y}) \\
& =3 \cdot \log _{4}(4)+\log _{4}(\sqrt{x y}) \text { Since } \log _{4}(4)=1 \\
& =\log _{4}\left(4^{3}\right)+\log _{4}(\sqrt{x y}) \\
& =\log _{4}\left(4^{3} \cdot \sqrt{x y}\right) \\
3+\frac{1}{2} \log _{4}(x)+\frac{1}{2} \log _{4}(y) & =\log _{4}(64 \sqrt{x y})
\end{aligned}
\]
- Common Base Law \(=\log _{a} a^{x}=x\) OR \(a^{\log _{a} x}=x\)
\[
\begin{array}{lll}
\log _{\mathrm{a}} \boldsymbol{N}=\boldsymbol{x} & \boldsymbol{a}^{\times}=\boldsymbol{N} & \log _{\mathrm{a}} \boldsymbol{N}=\boldsymbol{x} \\
\boldsymbol{a}^{x}=\boldsymbol{N} & 2^{3}=8 & \log _{2} 8=3 \\
\boldsymbol{a}^{\log _{a} \boldsymbol{N}}=\boldsymbol{N} & \mathbf{3}^{4}=81 & \log _{3} 81=4 \\
& \mathbf{5}^{3}=125 & \log _{5} 125=3 \\
& \mathbf{1 0}^{4}=10000 & \log _{10} 10000=4 \\
& \mathbf{7}^{1}=7 & \log _{7} 7=1 \\
& \mathbf{5}^{0}=1 & \log _{5} 1=\mathbf{0}
\end{array}
\]
- The Law of Logarithms for Powers (Power Law) \(=\log _{a} x^{n}=n \log _{a} x\)
- The Law of Logarithms for Roots \(=\log _{x} \sqrt[n]{x^{m}}=\log _{a} x^{\frac{m}{n}}=\frac{m}{n} \log _{a} x\)
- The Multiplication Law of Logs \(\left(\right.\) Product Law) \(=\log _{a} x y=\log _{a} x+\log _{a} y\)
- The Division Law of Logs (Quotient Law) \(=\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y\)
- Change of Base Law \(=\log _{a} x=\frac{\log x}{\log a}\)
- Common Base Law \(=\log _{a} a^{x}=x\) OR \(a^{\log _{a} x}=x\)

\subsection*{8.3 Laws of Logarithms}

\section*{KEY IDEAS}
- Let \(P\) be any real number, and \(M, N\), and \(c\) be positive real numbers with \(c \neq 1\). Then, the following laws of logarithms are valid.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Law } & \multicolumn{1}{c|}{ Description } \\
\hline Product & \(\log _{c} M N=\log _{c} M+\log _{c} N\) & \begin{tabular}{l} 
The logarithm of a product of numbers is the \\
sum of the logarithms of the numbers.
\end{tabular} \\
\hline Quotient & \(\log _{c} \frac{M}{N}=\log _{c} M-\log _{c} N\) & \begin{tabular}{l} 
The logarithm of a quotient of numbers is the \\
difference of the logarithms of the dividend \\
and divisor.
\end{tabular} \\
\hline Power & \(\log _{c} M^{P}=P \log _{c} M\) & \begin{tabular}{l} 
The logarithm of a power of a number is the \\
exponent times the logarithm of the number.
\end{tabular} \\
\hline
\end{tabular}
- Many quantities in science are measured using a logarithmic scale. Two commonly used logarithmic scales are the decibel scale and the pH scale.

\section*{Working Example 1: Use the Laws of Logarithms to Expand Expressions}

Expand each expression using the laws of logarithms.
a) \(\log _{4} \frac{x^{3} y}{4 z}\)
b) \(\log _{5} \sqrt{x y^{3}}\)
c) \(\log \frac{100 \sqrt[3]{x^{4}}}{y^{2}}\)

\section*{Solution}
a) \(\log _{4} \frac{x^{3} y}{4 z}=\log _{4} \frac{x^{3} y}{}-\log _{4} 4 z \quad\) quotient law \(\div \rightarrow-\)

power \(=3 \log _{4} x+\log _{4} y-1-\log _{4} z\)
Why does \(\log _{4} 4=1\) ?
b) \(\log _{5} \sqrt{x y^{3}}=\log _{5}\left(x y^{3}\right) \sqrt{\frac{1}{2}} \sqrt{x}=x^{\frac{1}{2}}\)
\[
=\frac{1}{2} \log _{5}\left(x y^{3}\right) \text { pawerlar }
\]
\[
=\frac{1}{2}\left(\log _{5}-x+\log _{5} \frac{y^{3}}{3}\right) \text { product law }
\]
\[
=\frac{1}{2}\left(\log _{5} x+3 \log _{5} y \quad\right. \text { powerlaw }
\]
\[
=\frac{1}{2} \log _{5} \frac{x}{2}+\frac{3}{2} \log _{5} 4 \quad \text { simplify } .
\]
\[
\begin{aligned}
& -\frac{1}{2} \log _{5} \ldots+\cdots \text { pownion } \\
& =\frac{1}{2} \log _{5} \frac{x}{2}+\frac{3}{2} \log _{5} \frac{y}{2} \text { simplify. } \\
& =\frac{1}{2} \log _{5} x+\frac{3}{2} \log _{5} y
\end{aligned}
\]
c) \(\log \frac{100 \sqrt[3]{x^{4}}}{y^{2}}=\log 100 \sqrt[3]{x^{4}}-\log y^{2} \quad\) quotient land
\[
=\log 100+\log x^{\frac{4}{3}}-\log y^{2} \quad \text { product lows }
\]
\[
\log _{10} \pi x^{2}=2=2^{\frac{L}{2}+\frac{4}{3} \log x-2 \log y \quad \text { power } l \mathrm{c} x}
\]

\section*{Working Example 2: Write Expressions With a Single Logarithm}

Rewrite each expression using a single logarithm. State the restrictions on the variable.
a) \(\log _{2} x^{3}-4 \log _{2} x-\log _{2} \sqrt{x}\)
b) \(4 \log _{6} y^{2}+\log _{6} y-\frac{2}{3} \log _{6} y\)
c) \(\log (x-3)+\log (x+4)\)

\section*{Solution}
a) \(\log _{2} x^{3}-4 \log _{2} x-\log _{2} \sqrt{x} \underset{\substack{\text { radical } \\ \text { froctionement }}}{\substack{\text { repent }}}\)

quotient lav
\[
=\log _{2} \frac{1}{x^{\frac{3}{2}}}, x>0
\]
\[
=\log y^{\frac{25}{3}}, y>0
\]
c) \(\quad \log (x-3)+\log (x+4)\)
\[
\begin{aligned}
& \text { expanetrales } \\
& 3-\left(4+\frac{1}{2}\right)
\end{aligned}
\]
\[
O R \frac{25}{3} \log y
\]
\[
=\log \left(x^{2}+x-12\right), \frac{x>3}{2} \quad \begin{aligned}
& x \\
& x^{3-\frac{9}{2}} \\
& x^{-\frac{3}{2}} \rightarrow \frac{1}{x^{\frac{1}{2}}}
\end{aligned}
\]

\section*{Working Example 3: Evaluate Expressions With the Laws of Logarithms}

Evaluate each expression.

Evaluate each expression.
a) \(\log _{4} 8+\log _{4} 32\)
b) \(\log _{6} 216 \sqrt[4]{36}\)

\section*{Solution}
\[
\text { a) } \begin{aligned}
& \log _{4} 8+\underset{\downarrow}{ } \log _{4} 32 \text { product } \\
= & \log _{4}(8 \times 32) \\
= & \log _{4} \frac{256}{4} \\
= & \log _{4} 4^{4} \\
= & 4
\end{aligned}
\]
b) \(216=6^{3}\) and \(\sqrt[4]{36}=6^{\frac{1}{2}} \quad 36^{\frac{1}{4}}=\left(6^{2}\right)^{\frac{1}{4}}\) Rewrite \(\left.\log _{6} 216 \sqrt[4]{36}.\right)=6^{\frac{1}{2}}\) \(\log _{6} 216 \sqrt[4]{36}=\log _{6} 6^{3} 6^{\frac{1}{2}} \xrightarrow{\longrightarrow}\) add exponents \(=\frac{\log _{6} 6^{\frac{7}{2}}=6^{3+\frac{1}{2}}=6^{\frac{6}{2}+\frac{1}{2}}}{\frac{7}{2}}\)

Dd See pages 395-399 of Pre-Calculus 12 for more examples.

276 MHR • Chapter 8 978-0-07-073891-1```

