Extra Practice for Chapter 8.4

1. Solving the following equations. Show restrictions and final answer in a box.
(1) Product
a) $\log _{2}(x-2)+\log _{2}(x-1)=2$ Law

$$
\log _{c} A=z
$$

(2) change to experiential form
(3) Solve
(4) creek

$$
{ }^{-2}=-3
$$

$$
\log _{2}(x-2)(x-1)=2
$$

$$
\begin{aligned}
& g_{2}^{(x-2)(x-1)}=2 \\
& (x-2)(x-1)=2^{2} \\
& (x)
\end{aligned}
$$

$$
A=C^{2}
$$

(1)Quotient Law
b) $\log _{3}(2 x+5)-\log _{3}(x+2)=\log _{3} 4$
(2) Cancel Logs

$$
\begin{gathered}
\log _{3}\left(\frac{2 x+5}{x+2}\right)=\log _{3} 4 \\
\frac{2 x+5}{x+2}=4 \\
2 x+5=4(x+2) \\
2 x+5=4 x+8 \\
-4 x-5 x-5 \\
-2 x=3
\end{gathered} \rightarrow x=-\frac{3}{2} \quad 4
$$

2. Solving the following equations:

Restrictions

$$
\begin{array}{ll}
\text { STriction } \\
2 x+5>0 & x+2>0
\end{array} \quad A=B
$$

$$
\begin{array}{ll}
x>-\frac{5}{2} & \frac{x>-2}{(-2.5)} \\
\end{array}
$$

a) $3^{(x-1)}=9(27)^{(2-x)}$

$$
\begin{aligned}
& \text { a) } \begin{aligned}
3^{(x-1)} & =3^{2} \cdot\left(3^{3}\right)^{2-x} \\
3^{x-1} & =3^{2(20 D 6-3 x} \\
3^{x-1} & =3^{8-3 x} \\
x-1 & =8-3 x \rightarrow \frac{4 x}{4}=\frac{9}{4} \\
+13 x & =x=\frac{9}{4} \\
\text { b) } 2^{(x-3)} & =3(5)^{(2-x)}
\end{aligned}
\end{aligned}
$$

Unit 3 Page 2

$$
\begin{aligned}
& \text { b) } 2^{(x-3)}=3(5)^{(2-x)} \\
& \log _{2} 2^{x-3}=\log _{x} 3(5)^{2-x} \\
& (x-3) \log 2=\log 3+\log 5^{2-x} \\
& (x-3) \log 2=\log 3+(2-x) \log 5 \\
& x \log 2-3 \log 2=\log 3+2 \log 5-x \log 5 \text { collect } \\
& \text { terns } \\
& x \log 2+x \log 5=\log 3+2 \log 5+3 \log 2 \quad x \text { inlet } \\
& x(\log 2+\log 5)= \\
& x=\frac{(\log (3)+2 \log (5)+3 \log (2))}{(\log (2)+\log (5))} \approx 2.78^{\swarrow}
\end{aligned}
$$

Extra Practice for Chapter 8.4

Applications
3. A scientist started with a culture of 20 bacteria in a dish. He noticed that after 80 hours, there were 1800 bacteria. What is the doubling time of this bacteria?

$$
\begin{aligned}
\frac{1800}{20} & =\frac{20(2)^{\frac{80}{n}}}{20} \\
\log 90 & =\log 2^{80 / n} \\
n \log 90 & =\frac{80}{n} \log 2 \\
\frac{n \log 90}{\log 90} & =\frac{80 \log 2}{\log 90} \\
n & =\frac{80 \log 2}{\log 90}=12.32 \mathrm{hr} .
\end{aligned}
$$

4. At the beginning of the year, you deposit $\$ 1000$ into a bank account, with an annual interest rate of 5%. Assume no other deposits or withdrawals are made and the interest rate stays constant.
a) what will be the value of the account after 5 years if interest is compounded annually?

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \quad A=1000(1+0.05)^{5} . \quad \begin{aligned}
& A \\
&=1000(1.05)^{5} \\
& A=\$ 1276.28
\end{aligned}
$$

b) how long will it be when his money doubles in value?

$$
\begin{aligned}
\frac{2000}{1000} & =\frac{1000(1.05)^{t}}{1000} \\
\log 2 & =\log 1.05^{t} \\
\frac{\log 2}{\log 2.05} & =\frac{t \log 1.05}{\log } . \\
t & =\frac{\log 2}{\log 1.05}=14.21 \mathrm{yr}
\end{aligned}
$$

Extra Practice for Chapter 8.4
5. When people take a particular medicine, the drug is metabolised and eliminated at a certain rate. Suppose the initial amount of a drug in the body is 200 mg and is eliminated at a rate of 30% per hour, How long will it take to reach 10 mg ?

$$
\begin{aligned}
& 10=\frac{200(1-0.3)^{\frac{t}{7}}}{2000} \\
& \frac{1}{20}=(0.7)^{t} \\
& \frac{\log \left(\frac{1}{20}\right)}{\log .7}=\frac{t \log 0.7}{100.7} \\
& t=\frac{\log \left(\frac{120}{20}\right.}{\log 0.7} \\
& t=8.40 \mathrm{hr}
\end{aligned}
$$

$$
n=1
$$

6. Certain bacteria, given favourable growth conditions, grow continuously at a rate of 4.6\% day. Find the bacterial population after thirty-six hours, if the initial population was 250 bacteria.

$$
\begin{aligned}
& A=250\left(1+0.04666_{6}^{\frac{31}{24}}\right. \\
& A=250(1.046)^{3 / 2} \\
& A=267 \text { bacteria }
\end{aligned}
$$

Extra Practice for Chapter 8.4
7. A penicillin solution has a half-life of 6 days. How long will it take for the concentration to drop to 70% of the initial concentration?

$$
\begin{aligned}
& 0.7=1\left(\frac{1}{2}\right)^{t / 6} \\
& \frac{6 \times \frac{\log 0.7}{\log \frac{1}{2}}}{}=\frac{t}{6} \frac{\log \frac{1}{2}}{\log \frac{1}{2}} \\
& t=\frac{6 \log 0.7}{\log 0.5} \\
& t=3.09 \text { days }
\end{aligned}
$$

8. What is the magnitude of the earthquake in City A if the earthquake in City B has a magnitude of 5.7 on the Richter scale and is 4500 times as intense?

$$
\begin{aligned}
& 4500=10^{5.7-R_{A}} \\
& \log 4500=\left(5.7-R_{A}\right) \log 10 \\
& \log 4500=5.7-R_{A} \\
& \longleftrightarrow \\
& R_{A}=5.7-\log 4500 \\
& R_{A}=2.0 \text { Magnitude in } C_{i+y} A
\end{aligned}
$$

Extra Practice for Chapter 8.4
9. What is the pH of a tomato if it is 15000 times more acidic than hand soap with a pH of 9.5 ?

$$
\begin{aligned}
I & =I_{0}(10)^{P_{H_{H}}-P_{H_{C}}} \\
15000 & =(10)^{9.5-H_{T}} \\
\log 15000 & =\left(9.5-p H_{1} \log 10\right. \\
\log 15000 & =9.5-p H_{T} \\
p H_{T} & =9.5-\log 15000 \\
p H_{T} & =5.3
\end{aligned}
$$

10. It is said that the eardrum can rupture at a decibel level that is $100,000,000$ times as intense as the normal sound level of a vacuum at 70Db on the Decibel scale (that would be like listening to a jet at take-off). At what Db value on the scale can the eardrum rupture?

$$
\begin{aligned}
I & =I_{0}^{\prime}(10)^{10} \\
100,000,000 & =10^{\frac{D B_{1}-70}{10}} \\
\log 100000000 & =\frac{D B-70}{10} \log 10 \\
7 & =\frac{D B-70}{10} \\
10 \times 7 & =D B-70 \\
+10 & =140
\end{aligned}
$$

