Plan For Today:

- 1. Questions & Review from 8.4?
 - * Do 8.4 Check-in Quiz Solving Log Equations
- 2. Finish Chapter 8: Logarithmic Functions
 - ✓ 8.1: Understanding Logarithms
 - ✓ 8.2: Transformations of Logarithmic Functions
 - ✓ 8.3: Laws of Logarithms
 - * 8.4: Logarithmic & Exponential Functions (finish)
- 3. Work on Practice Questions from Workbook

Solving Exp & Log Equations Exponential Equation Common Base No Common Base Logs & Numbers All Logs "Equate Exponents" "Log Both Sides" "Change Form" "Drop Logs"

"Reciprocal Exponent"

Variable in Base

Plan Going Forward:

1. Finish going through all of the Ch8 questions in workbook and finish working on review handout. Complete Ch7 & 8 review and practice.

• Chapter & project due tuesday, Nov. 21st (Try For Today)

O UNIT 3 EXAM ON TUESDAY, NOV. 21ST

2. Start Ch9 after the exam on Tuesday.

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at <u>anurita.weebly.com</u> after class. Anurita Dhiman = adhiman@sd35.bc.ca

Thursday, Nov. 16th In-Class Notes

Review

8.4 Logarithmic and Exponential Equations

KEY IDEAS

- When solving a logarithmic equation algebraically, start by applying the laws of logarithms to express one side or both sides of the equation as a single logarithm.
- Some useful properties are listed below, where c, L, R > 0 and $c \neq 1$.
 - If $\log_{e} L = \log_{e} R$, then L = R.
 - The equation $\log_e L = R$ can be written with logarithms on both sides of the equation as $\log_{c} L = \log_{c} c^{R}$.
 - The equation $\log_{c} L = R$ can be written in exponential form as $L = c^{R}$.
 - The logarithm of zero or a negative number is undefined. To identify whether a root is extraneous, substitute the root into the original equation and check whether all of the logarithms are defined.
- You can solve an exponential equation algebraically by taking logarithms of both sides of the equation. If L = R, then $\log_c L = \log_c R$, where c, L, R > 0 and $c \neq 1$. Then, apply the power law for logarithms to solve for an unknown.
- You can solve an exponential equation or a logarithmic equation using graphical methods.
- Many real-world situations can be modelled with an exponential or a logarithmic equation. A general model for many problems involving exponential growth or decay is

Final quantity = initial quantity × (change factor)^{number of changes}

Working Example 1: Solve Logarithmic Equations

Solve.

- a) $\log_4(5x + 1) = \log_4(x + 17)$
- **b**) $\log(5x) \log(x 1) = 1$
- c) $\log_6(x-3) + \log_6(x+6) = 2$

Solution

- a) Since $\log_4(5x + 1) = \log_4(x + 17), 5x + 1 = x + 17$. Or on both So, 4x = 16 and x = 4.
 - Check x = 4 in the original equation.

Left Side	Right Side			
$log_4 (5(4) + 1)$ = $log_4 21$	$\log_4(4 + 17)$			
$= \log_4 21$	$= \log_4 21$			
Left Side = Right Side				

Side s
$$q_{1} = sign$$

are common
: Cancel
 $\log (5x+1) = \log (x+1)$
 $4x = 16$
 $x = 4$
 $x = 4$
 $x = 4$
 $x = 1$
 $x = 4$
 $x = 1$
 $x = 4$
 $x = 1$

ations 2+1720

282 MHR • Chapter 8 978-0-07-073891-1

282 MHR • Chapter 8 978-0-07-073891-1

b) Method 1: Solve Algebraically by Rewriting in Exponential Form

Using the laws of logarithms, rewrite $\log(5x) - \log(x - 1)$ as $\log \frac{5x}{2x}$

Then, rewrite $\log \frac{5x}{x-1} = 1$ in exponential form. $\frac{5x}{x-1} = -10^{1}$

Multiply both sides by
$$(x-1)$$
.Restrictions $\frac{5x}{x-1}(x-1) = 10(x-1)$ $5x > 0$ $x-1 > 0$ $5x = 10x - 10$ $5x > 0$ $x-1 > 0$ $-5x = -10$ $x > 0$ $x > 1$

Check:

Left SideRight Side
$$log (5(2)) - log (2 - 1)$$
1 $= log 10 - log 1$ 1 $= 1 - 0$ 1Left Side = Right Side

$$\log(5x) - \log(x-1) = 1$$

$$\log\left(\frac{5x}{x-1}\right) = 1$$

$$\log\left(\frac{5x}{x-1}\right) = 1$$

$$\log \cos n$$

$$\sin s_{10} \sin s_{10}$$

S

quotrentl

Method 2: Solve Algebraically by Writing Each Side as a Logarithm

Begin by rewriting 1 as log₁₀ _____.

So, the equation is $\log (5x) - \log (x - 1) = \log 10$.

Solve for x.

 $\log(5x) - \log(x - 1) = 10$

$$\log \frac{5x}{x-1} = \log 10$$
$$\frac{5x}{x-1} = 10$$
$$5x = 10(x-1)$$
$$5x = 10x - 10$$
$$-5x = -10$$
$$x = 2$$

Compare the algebra in Method 1 to the algebra in Method 2. How are the methods similar? How are they different?

Method 3: Solve Graphically

Use technology to graph the equations $y = \log (5x) - \log (x - 1)$ and y = 1 in the same window. Then, find the point of intersection.

The solution is x = 2.

Pre-Calculus 12 Student Workbook • MHR 978-0-07-073891-1 283 c) Using the laws of logarithms, rewrite the left side of the equation. $\log_6 (x-3) + \log_6 (x+6) = 2$ $\operatorname{Product}_{A} \log_{6}(x-3)(x+6) = 2$ Method 1: Rewrite in Exponential Form (Boot Base) In exponential form, the equation is equivalent to $(x - 3)(x + 6) = 6^2$. Expand and simplify the left side of the equation. $p_{tow}^{roduct} = \log_{6}(z-3) + \log_{6}(z+6) = 2$ $p_{tow}^{roduct} = \log_{6}(z-3)(z+6) = 2$ $p_{tow}^{roduct} = (z-3)(z+6) = 6^{2}$ $x^2 + 3x - 18 = 36$ Subtract 36 from each side. $x^2 + 3x - 54 = 0$ Factor the left side. FOIL $x^2 + 3x - 18 = 36$ (x + 9)(x - 6) = 0 $x = \underline{-9}$ or $x = \underline{6}$ Solve: x2 +3x -54=0 The original equation is defined for x > 3 and x > -6. In other words, both conditions are met when x > 3. Thus, x = -9 is an extraneous root. Check x = 6. (x+9)(x-6) = 0 factor x+9=0Left Side Right Side 2 $\log_6(6-3) + \log_6(6+6)$ $= \log_6 3 + \log_6 12$ $= \log_{6} 36$ = 2Left Side = Right Side Restrictions: 2-3>0 Method 2: Rewrite as a Logarithm Written as a logarithm with base 6, 2 = - $\log_6(x-3) + \log_6(x+6) = \log_6 36$ $\log_{6} (x-3)(x+6) = \log_{6} 36$ (x-3)(x+6) = 36= 36 = 0Factoring, = 0So, x = -9 or x = 6.

3) -2.

Since x > 3, the solution is x = 6.

MHR • Chapter 8 978-0-07-073891-1 284

Working Example 2: Solve Exponential Equations

b) $8^{2x-3} = 15\ 109$

Solve. Express your answer as an exact value and as a decimal correct to two decimal places.

c) $3^{2x} = 7^{x+1}$

Solution

a) 5^x = 200

a) Method 1: Use the Power Law of Logarithms

Take the logarithms of both sides of the equation:

$$\log 5^{*} = \log 200$$

$$x \log 5 = \log 200$$

$$x = \frac{\log 200}{\log 5}$$
Exact * Required

As a decimal, $x \approx 3.29$. Approximate * if question asks.

Method 2: Write in Logarithmic Form

 $5^x = 200$ is the same as $\log_5 200 = x$. An exact value for x is log₅ 200. $x ext{ is } \log_5 200.$ Use technology to calculate the value to two decimal places: $\log_5 200 = 3.29$. $x = \log_5 200$ Approx:

7(+1=42 3.29203 log_(200) 1/99

& since no common base, use logs to solve

-> IF common base

possible, ch7 method

 $ex: 2^{x + 1} = 4^x$

b) Take the logarithm of each side: $\log (2x-3) = \log 15 109$. Then, use the power law of logarithms.

$$\begin{array}{c} x = 3 \\ x = \frac{1}{2} \left(\frac{\log 15 109}{\log 8} + 3 \right) \\ x = \frac{1}{2} \left(\frac{\log 15 109}{\log 8} + 3 \right) \\ x = \frac{1}{2} \left(\frac{\log 15 109}{\log 8} + 3 \right) \\ x = \frac{1}{2} \left(\frac{\log 15 109}{\log 8} + 3 \right) \\ x = \frac{\log 15107}{2\log 8} + \frac{2}{2} \\ x = \frac{\log 15107}{2\log 8$$

c) Since $3^{2x} = 7^{3}$ $^{+1}$, log $3^{24} = \log 7$ < take log of both sizes Use the power law of logarithms.

$$\frac{2x \log 3}{2x \log 3} = \frac{(x+1) \log 7}{(x+1) \log 7} \leftarrow power law}$$

$$2x \log 3 = x \log 7 + \log 7 \leftarrow expand brackets$$

$$2x \log 3 - x \log 7 = \log 7 \leftarrow maxe x is to one side$$
Factor. - common factor x

1

$$2x \log 3 - x \log 7 = \log 7$$
Factor: - common factor x

$$x(2 \log 3 - \log 7) = \log 7$$
Factor: - common factor x

$$x(2 \log 3 - \log 7) = \log 7$$
Factor: - common factor x

$$x(2 \log 3 - \log 7) = \log 7$$
Factor: - common factor x

$$x(2 \log 3 - \log 7) = \log 7$$
Factor: - common factor x

$$x = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$x = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$x = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$x(2 \log 3 - \log 7) = \log 7$$
Factor: - common factor x

$$x(2 \log 3 - \log 7) = \log 7$$
Factor: - common factor x

$$x(2 \log 3 - \log 7) = \log 7$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y = \frac{\log 7}{2 \log 3 - \log 7}$$
Factor: - common factor x

$$y$$

= 23.8691. Written as a decimal, t is approximately 23.86. It will take about 23.9 years until the town reaches a population of 20 000.

1091.02

Working Example 4: Model Exponential Decay

- A business invests \$450 000 in new equipment. For tax purposes, the equipment is considered to depreciate in value by 20% each year. $e^{n=1}b = 1 - 0.2 \rightarrow b = 0.8$
- a) Write an exponential equation to model the value of the equipment.
- b) What will be the value of the equipment in three years?
- c) When will the value first drop to \$100 000?

Solution

a) If V denotes the value of the equipment, and t is time, in years, then V = 450 000(0.8)^t.

10_

-t=3 (in 3yr) **b)** $V = 450\ 000(0.8)^3$ $= 230\ 400$

The equipment will be worth \$230 400 in three years.

c) $450\ 000(0.8)^t = 100\ 000$

A=450,000 (0.8)

100000 = 450000 (0.8

t

T	he equipm	ent will be wo	orth \$230 400 in three ye	ears.	100000 = 450000(08)	
D	ivide each	$t = 100\ 000$ side by 450 0	00: 43=	=	Toolar Toolar	
Ta	ake the log	garithm of eac	th side: $\log(\frac{10}{45})$	$\underline{} = \underline{} \underbrace{}_{00} \underbrace{}_{0} \underbrace{}$		
	_		rithms to rewrite the equ 8:	ution: $C_{2}(4)$		
D	ivide each	side by log 0.	8: = pment will have a value	102(43) 102 102 08	tax purposes. $1 = 6.74_{\odot}$	\mathbf{r}
					tax purposes. $C = 6.1 + 6$	<u>'</u>
	See pages	s 406–411 of <i>1</i>	Pre-Calculus 12 for more	e examples.		
286	MHR •	• Chapter 8	978-0-07-073891-1			

8.4: Logarithmic & Exponential Functions

Using log laws to solve the log equation:

Solving log Equations:

 Use the log laws to condense each side of the = sign to a single log or number.

$$log_a b = log_a c \quad OR \quad log_a b = C$$

2. A) If one log on each side, cancel the logs.

$$log_a b = log_a c$$
$$log_a b = log_a c$$
$$b = c$$

B) If log on one side and a number on the other side, BOOT the log to change to exponential form.

$$log_a b = C$$

$$a^{C} = b$$

- 3. Solve the equation.
- Write restrictions or do a check to determine if there are any extraneous roots.

Solving a logarithmic equation by changing to exponential form = BOOT THE LOG

Solve the log equation by combining to a common of base:

Recall solving an exponential by changing to a common base. You can then make the exponents equal and solve.

What if you can't get a common base? Log both side and use the power law to solve.

SOLVING EXPONENTIAL EQUATIONS WITH LOGS:

1. Simplify equation by trying to get a single base on both sides of the equal sign.

$$M^{a+b} = N^{c+d}$$

Recall: if there is a single common base on each side of the = sign, cancel the bases and make the exponents equal to solve.

$$M^{a+b} = M^{c+d}$$
$$M^{a+b} = M^{c+d}$$
$$a+b = c+d$$

2. If you cannot get a common base, take the log of both sides.

$$\log M^{a+b} = \log N^{c+d}$$

3. Use the power law to bring the exponent to the front of the log.

$$\log M^{a+b} = \log N^{c+d}$$
$$(a+b)\log M = (c+d)\log N$$

4. Expand the brackets by distribution, collect the common variables to one side, factor and solve for x.

$$(a+b)\log M = (c+d)\log N$$

 $a \log M + b \log M = c \log N + d \log N$

Exponential Equation with Different Bases

 Isolate the exponential part of the equation. If there are two exponential parts put one on each side of the equation.
 Take the logarithm of each side of the equation.

3. Apply power property to rewrite the exponent.

4. Solve for the variable.

Example:

Example:

$3^{x} - 1 = 4$	$5^{x-1} - 2^x = 0$
$3^{x} = 5$ $\log 3^{x} = \log 5$ $x \log 3 = \log 5$ $x = \frac{\log 5}{\log 3}$	$5^{x-1} = 2^x$
	$\log 5^{x-1} = \log 2^x$ $(x-1)\log 5 = x\log 2$
	$x \log 5 - \log 5 = x \log 2$
	$x\log 5 - x\log 2 = \log 5$
	$x(\log 5 - \log 2) = \log 5$
	$x = \frac{\log 5}{\log 5 - \log 2}$

Solve $6^{X} - 15 = 0$ 1. Isolate the exponential expression of the equation. $6^{X} = 15$ 2. Take the common logarithm of each side. $\log 6^{X} = \log 15$ 3. Use the power property $x \log 6 = \log 15$ 4. Solve for the variable $x = \frac{\log 15}{\log 6}$

Compound Interest: $A = A_{\circ} \left(1 + \frac{r}{n}\right)^{nt}$

General Growth/Decay: $A = A_{\circ}(b)^{\frac{1}{n}}$

General Earthquake/pH: $I = (10)^{high-low}$

Word Problems that Contain Exponential

Equations with Different Bases

That sounds hard. I'm not sure if I'm ready for this. Just looking at that makes my brain hurt, but I'll give it a try.

Growth of a certain strain of bacteria is modeled by the equation $G = A(2.7)^{0.5841}$ where:

G = final number of bacteria

A = initial number of bacteria t = time (in hours)

In approximately how many hours will 4 bacteria first increase to 2,500 bacteria? Round your answer to the nearest hour. 2,500 = 4(2.7)^{0.584†}

Write the equation

 $625 = (2.7)^{0.584t}$ Simplify the equation

log625 = log(2.7)^{0.584†} Turn it into a log equation

log625 = 0.584tlog(2.7) Apply the logarithm laws

log 625 0.584log 2.7 = †

Isolate the variable

t = 11.09844215

Bacteria will first increase to 2,500 in approximately 12 hours. Solve with your calculator Make sure you use the proper parenthetical formation.

Answer the question.

JAN02 30 That's a Def-Con 3 problem. It's worth 4 points on the regents exam.

Remember: Don't worry about the words, just look for numbers. formulas, and equations.

Depreciation (the decline in cash value) on a car can be determined by the formula $V = C(1 - r)^{\dagger}$, where V is the value of the car after t years, C is the original cost of the car, and r is the rate of depreciation. If a car's cost, when new, is \$15,000, the rate of depreciation is 30%, and the value of the car now is \$3,000, how old is the car to the nearest tenth of a year?

DefCon 3 4 points

The current population of Little Pond, New York is 20,000. The population is decreasing, as represented by the formula $P = A(1.3)^{-0.234t}$, where P = final population, t = time, in years, and A = initial population.

What will the population be 3 years from now? Round your answer to the nearest hundred people.

To the nearest tenth of a year, how many years will it take for the population to reach half the present population?

3,000 = 15,000(1 - .30)[†] Write the equation $.2 = (1 - .30)^{\dagger}$.2 = (.7)* $\log(.2) = \log(.7)^{\dagger}$ log(.2) = tlog(.7)

log (.2) = + $\log(.7)$

t = 4.512338026

The car is approximately 4.5 years old

P = 16,635,72614

Simplify the equation

Turn it into a log equation

Apply the logarithm laws

Isolate the variable

Solve with your calculator Make sure you use the proper parenthetical formation.

Answer the question.

Part 1

 $P = 20,000(1.3)^{-0.234(3)}$

Plug in the given ve Download

Solve with your calculator

The population will be approximately 16,600

Answer the question.

Part b

10,000 = 20,000(1.3) -0.2341 Write the equation

1 = 2 (1.3) -0.234t

Simplify the equation

log 1 = log 2 (1.3)-0.234t Turn it into a log equation

log 1 = log 2 + log (1.3)-0.234t

log1-log2

-0.234log1.3

t = 11.2903

It will take

11.3 years

approximately

 $\log 1 - \log 2 = -0.234 \log (1.3)$

 $\log 1 = \log 2 - 0.234 \log (1.3)$

Apply the logarithm laws

Isolate the variable

Solve with your calculator Make sure you use the proper parenthetical formation.

Answer the question.

Extra Practice for Chapter 8

1. Solving the following equations. Show restrictions and final answer in a box.

a)
$$\log_{2}(x-2)(2x-1) = 2$$

 $\log_{2}(x-2)(x-1) = 2$
 $(x-2)(x-1) = 2$
 $(x-2)(x-1) = 2$
 $(x-2)(x-1) = 2^{2}$
 $(x-2)(x-1) = 2^{2}$
 $x^{2} - 3x + 2 - 4 = 0$
 $x^{2} - 3x - 2 = 0$
b) $\log_{3}(2x+3) - \log_{3}(x+2) = \log_{3}4$
 $\frac{1}{x}$
 $\log_{3}\left(\frac{2x+5}{x+2}\right) = \log_{3}4$
 $\frac{2x+5}{x+2} = 4(x+2)$
 $2x+5 = 4x+8$
 $-4x + 5 = 4x+8$
 -5
() Factor (2) Auadratic
 $x = -(-3) \pm \sqrt{-3}$ Auadratic
 $x = -(-3) \pm \sqrt{-3} + \sqrt{-3}$
 $2(1)$
 $x = -(-3) \pm \sqrt{-3} + \sqrt{-3}$
 $(x + 2) - (x + 2) + \sqrt{-3} + \sqrt{-$

2. Write the following in expanded form:

a)
$$log_5 (\underbrace{254^3}_{\overline{BC^2}} \div \rightarrow 1)$$
 $log_5 25A^3 - log_5 \underbrace{48C^2}_{\overline{BC^2}}$
(a) $log_5 \underbrace{48C^2}_{\overline{BC^2}} \div \rightarrow 1$ $log_5 25A^3 - (log_5 55 + log_5 C^2)$
(b) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 C^2)$
(c) $log_5 2^5 + log_5 A^3 - (log_5 55 + log_5 A^2)$
(c) $log_5 2^5 + log_5 A^2 - (log_5 55 + log_5 A^2)$
(c) $log_5 2^5 + (log_5 55 + log_5 A^2)$
(c) $log_5 2^5 + (log_5 55 + log_5 A^2)$
(c) $log_5 2^5 + (log_5 55 + log_5 A^2)$
(c) $log_5 2^5 + (log_5 55 + log_5$

a)
$$2\log_5(x) - \frac{1}{2}\log_5 y + 3\log_5 z$$

() $\log_5 x^2 - \log_5 y^2 + \log_5 z^3$
() $\log_5 \left(\frac{x^2}{\sqrt{y}} \cdot \frac{z^3}{1}\right) \rightarrow 3$ $\log_5 \left(\frac{x^2 z^3}{\sqrt{y}}\right)$

Extra Practice for Chapter 8

3. Write a log base two equation in standard form after the following transformations:

Vertical stretch by a factor of 3 and a reflection over the x-axis, a Horizontal stretch of ½, 3 units right and 5 down. a=3 -a b=2 h=3 k=-5 $y=-3\log_2(2(x-3))-5$

4. Solving the following equations:

Extra Practice for Chapter 8

1 A= 0.24

A=A,(b)*/

= 8.24

5. A radioactive substance decays with a half-life of 4 days. How long would it take for the sample to decay to 24% of the original amount? t=?

n=4

(00) (24)

T A₀ = 1.00

 $\begin{aligned} \log 0.24 &= \int_{\log} (0.5)^{\frac{1}{4}} \\ (4) \log 0.24 &= \frac{1}{4} \log 0.5 \quad (4) \\ 4\log 0.24 &= +\log 0.5 \quad (4) \\ 4\log 0.24 &= +\log 0.5 \quad (4) \\ 1090.5 &= \log 0.5 \quad (4) \\ 1090.5 &= 1000 \\ 1000.5 &= 10000 \\ 1000.5 &= 100000 \\ 10000.5 &= 1000000 \\ 10000.5 &= 100000 \\ 10000.5 &= 1000000 \\ 10000.5$ 6. If an earthquake in Town A is 22567 time more intense than an earthquake in Town B which had a magnitude of 2.3 on the Richter scale, what is the magnitude of the earthquake in Town A?

If a population of 4 rats grew to a population of 10,000 rats in 12 months, what is the doubling time of
the rats?
(h)
$$\log 22567 = 10 10^{-2.3}$$

 $\log 22567 = R_n - 2.3$
 $R_n = 100^{-2.5} + 2.3$
7. If a population of 4 rats grew to a population of 10,000 rats in 12 months, what is the doubling time of
the rats?
 $A = A_0(b)^{\frac{1}{2}n}$
 $\log 2500 = \log 2^{\frac{1}{2}n}$
(h) $\log 2500 = \log 2^{\frac{1}{2}n}$
(h) $\log 2500 = \log 2^{\frac{1}{2}n}$
 $\log 2500 = \log 2^{\frac{1}{2}n}$
(h) $\log 2500 = 12\log 2$. (h) $n = \frac{12\log^2}{\log 2600}$
 $n \log 2500 = 12\log 2$. (h) $n = \frac{12\log^2}{\log 2600}$
 $n \log 2500 = 12\log 2$.