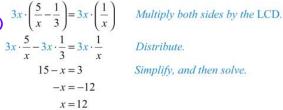
Plan For Today:

- 1. Any questions from 9.2 Graphing Rational Functions and Analysing Characteristics
 - * Do some 9.2 Review
 - * Do 9.2 Check-in Ouiz
- 2. Finish Chapter 9: Rational Functions
 - √ 9.1: Rational Function Transformations
 - √ 9.2: Analysing Rational Functions (Characteristics of Graphs)
 - 9.3: Graphs and Solving Rational Functions
- 3. Work on Practice Questions from Workbook



♦ UNIT 3 €XAM R€WRIT€

• Start time is 12:30pm

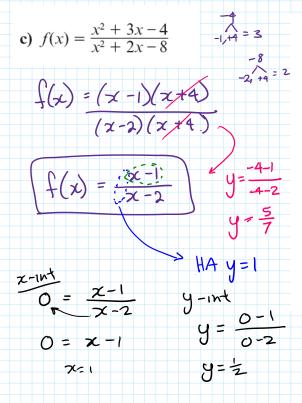
Plan Going Forward:

- 1. Go through 9.3 questions in textbook and finish working on all Ch9 workbook practice and practice review handout.
 - ❖ 9.3 CHECK-IN QUIZ ON THURSDAY, NOV. 30TH
 - * Chapter 9 project due tuesday, dec. 5th
 - * Chapter 9 test on tuesday, dec. 5th
- 2. We will start Topic 10 (Geometric Sequences & Series) on Thursday after finishing and reviewing Ch9. This topic is not in the workbook so you will receive a notes package.

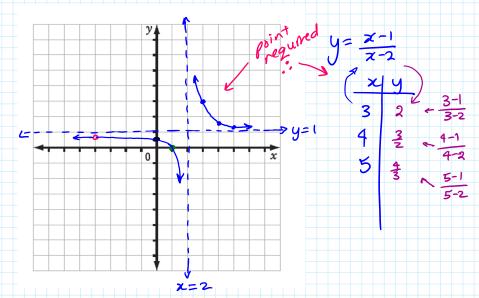
Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at anurita.weebly.com after class.

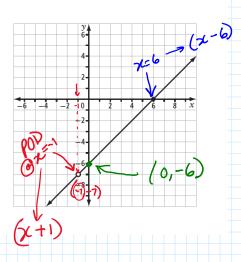
Anurita Dhiman = adhiman@sd35.bc.ca

9.2 Review



Characteristic	Answer
Restrictions	$x \neq 2$ $x = 2$
NPV	$\chi \neq 2$, $\chi = 2$ $\chi \neq 4$ $\chi = -4$
Asymptote(s)	VA X=2
	HA Y=1 -
Point(s) of	x=-4 / _\
Discontinuity	$\left(-4,\frac{5}{7}\right)$
x-intercept	(1,0)
y-intercept	(月至)
Domain	{ x \ x ≠ - 4, 2, x ∈ R} α ξρι x ≠ - 4, x ≠ 2, x ∈ R§.
Range	
	£y1y≠=,1,y=13.
0	x {y \ y≠=,y≠1,y€n}.



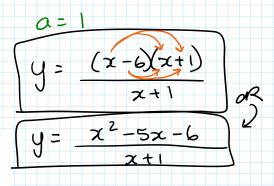


Recall:

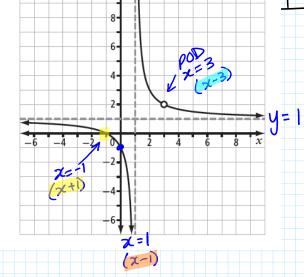
$$y = \frac{?}{2(x-6)(x+1)}$$
(x+1)

$$-6 = a(0-6)(0+1)$$

$$-6 = -6a$$



c)



$$y = \frac{1(x+1)(x-3)}{(x-1)(x-3)}$$

$$y = \frac{(x+1)(x-3)}{(x-1)(x-3)}$$

$$y = \frac{x^2 - 2x - 3}{x^2 - 4 + 3}$$

d) vertical asymptote: x = 7 x-intercepts: -1 and x

$$y = \frac{(x+1)(x+3)}{(x-7)}$$
Representation of the second contraction of the second contractio

b)
$$\frac{6}{x} - \frac{9}{x - 1} = \frac{1}{4}$$

L(D) $\frac{6}{x} - \frac{9}{x - 1} = \frac{1}{4}$

NPV

 $y \neq 0, x = 1$
 $24(x - 1) - 36x = x(x - 1)$
 $24x - 24 - 36x = x^2 - x$
 $-24x + 36x$
 $0 = x^2 + 11x + 24$
 $0 = (x + 3)(x + 8)$
 $x = -3 \quad x = -8$

c)
$$\frac{x}{x-2} + \frac{2}{x+3} = \frac{10}{x^2 + x - 6}$$

($x+3$)($x-2$) $\left[\frac{x}{x-2} + \frac{2}{x+3} = \frac{10}{x^2 + x - 6}\right]$

NPU

 $x \neq -3/2$

e)
$$\frac{2x}{x+3} + \frac{x}{x-3} = \frac{18}{x^2-9}$$

Factor.

(x+3)(x-3) $2x + \frac{x}{x+3} = \frac{18}{(x+3)(x-3)}$
 $2x(x-3) + x(x+3) = 18$
 $2x(x-3) + x(x+3) = 18$
 $2x^2 - 6x + x^2 + 3x = 18$

G(F $3x^2 - 3x - 18 = 0$
 $3(x^2 - x - 6) = 0$
 $3(x-3)(x+2) = 0$
 $x \neq 3$
 $x \neq 3$

$$D = ST$$

$$S = \frac{D}{T}$$

$$T = \frac{D}{S}$$

9.3 Connecting Graphs and Rational Equations

KEY IDEAS

Solving Rational Equations

You can solve rational equations algebraically or graphically.

· Algebraically

Solving algebraically determines the exact solution and any extraneous roots. To solve algebraically,

- Equate to zero and list the restrictions.
- Factor the numerator and denominator fully (if possible).
- Multiply each term by the lowest common denominator to eliminate the fractions.
- Solve for x.
- Check the solution(s) against the restrictions.
- Check the solution(s) in the original equation.

· Graphically

There are two methods for solving equations graphically.

Method 1: Use a System of Two Functions

- Graph each side of the equation on the same set of axes.
- The solution(s) will be the x-coordinate(s) of any point(s) of intersection.

Method 2: Use a Single Function

- Rearrange the equation so that one side is equal to zero.
- Graph the corresponding function.
- The solution(s) will be the x-intercept(s).

Example:

$$\frac{16}{x+6} = 4-x$$

$$x + \frac{16}{x+6} - 4 = 0, x \neq -6$$

$$(x+6)\left(x + \frac{16}{x+6} - 4\right) = (x+6)(0)$$

$$(x+6)(x) + \left(\frac{1}{x+6}\right)\left(\frac{16}{x+6}\right) - (x+6)(4) = 0$$

$$x^2 + 6x + 16 - 4x - 24 = 0$$

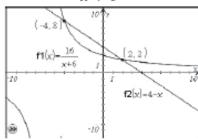
$$x^2 + 2x - 8 = 0$$

(x+4)(x-2)=0

roots:
$$x = -4$$
 and $x = 2$

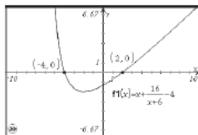
Example:
$$\frac{16}{x+6} = 4 - x$$

Graph $y = \frac{16}{x+6}$ and y = 4 on the same axes.



The points of intersection are (-4, 8) and (2, 2), so the roots are x = -4 and x = 2.

Graph
$$y = x + \frac{16}{x+6} - 4$$
.



x-intercepts: x = -4 and x = 2

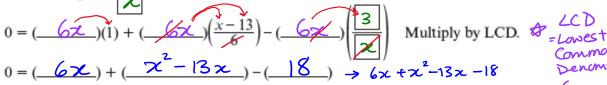
Working Example 1: Relate Roots and x-Intercepts . rook = solution

- a) Find the solution to $\frac{3}{x} = 1 + \frac{x 13}{6}$ algebraically.
- b) Verify your solutions graphically.

Solution

$$\frac{3}{x} = 1 + \frac{x - 13}{6}$$

 $0 = 1 + \frac{x-13}{6} - \frac{3}{2}$, $x \neq 0$ State restrictions and equate to 0. $R \approx NN \times 40$



Denominator

determined algebraically

· xint on the graph are the same

solutions /roots.

$$0 = \frac{\chi^2 - 7\chi - 18}{0 = (\chi - 9)(\chi + \chi)}$$
 -18

Combine like terms. (usu one of

Factor.

$$0 = (\underline{\chi - 9})(\underline{\chi + 2})$$

$$(\underline{\chi} - \underline{q}) = 0$$
 or $(\underline{\chi} + \underline{2}) = 0$

Is either value a non-permissible value? __NO__

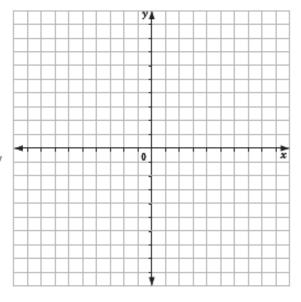
Check by substitution:

Skip \longrightarrow check NPV (R) : if $x \neq 0$ then x = -2,9

SILIP

 b) Use technology to graph the original function using a single function or a system of two functions. Sketch the graph on the grid. Label the asymptote(s). If you used two functions, label the point(s) of intersection. If you used one function, label the x-intercept(s).

Compare the solution(s) obtained algebraically and graphically. What can you conclude?



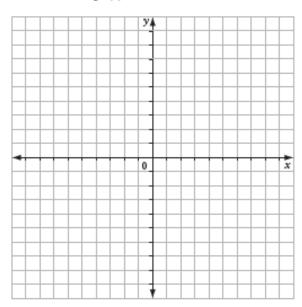
To see a similar example, see Example 1 on pages 459–460 of Pre-Calculus 12.

Working Example 2: Compare the Accuracy of Graphical and Algebraic Solutions

- a) Solve $\frac{3}{2x} \frac{2x}{x+1} = -2$ graphically, using either one or two functions. (Use a different graphical method than the one you used in Working Example 1.)
- b) Verify your solution(s) algebraically.

Solution

Use technology to graph the function, using either a single function or a system of two functions. Sketch the graph below. Label the asymptote(s) and the point(s) of intersection or the x-intercept(s). 5KIP



$$2x(x+1) \quad \frac{3}{2x} - \frac{2x}{x+1} = -2x$$

b) Solve algebraically. Describe your solution strategy to the right of each step.

(1) factor any denominators if possible

(2) Determine NPV +LCD

(3) Mutiply all terms by CCD

(4) Solve for
$$x$$
 + check Restrictions

(5) $\frac{3}{2x} - \frac{2x}{x+1} = -2$

(8) $\frac{3}{2x} - \frac{2x}{x+1} = -2$

(9) $\frac{3}{2x} - \frac{2x}{x+1} = -2$

(9) $\frac{3}{2x} - \frac{2x}{x+1} = -2$

(1) factor any denominators if possible (2) Determine NPV +LCD

(2) Determine NPV +LCD

(3) Mutiply all terms by CCD

(4) Solve for x + check Restrictions

(6) $\frac{3}{2x} - \frac{2x}{x+1} = -2$

$$3x + 3 - 4x^2 = -4x(x+1)$$

 $3x + 3 - 4x^2 = -4x^2 - 4x$
 $3x + 3 - 4x^2 = -4x^2 - 4x$
Compare the solutions you obtained graphically and algebraically. Which is more accurate?

$$7x = -3$$

$$x = -\frac{3}{7}$$

$$x \neq -1,0$$

To see a similar example, see Example 2 on pages 460–461 of *Pre-Calculus 12*.

MHR • Chapter 9 978-0-07-073891-1

Working Example 3: Solve a Rational Equation With an Extraneous Root

Solve $\frac{x}{x-1} - 2x = \frac{x+1}{2x-2}$ algebraically and graphically. Compare the solutions.

Solution

List the restriction(s) of the function.

1) Factor Denon 1st (2) LCD, NPV (P)

Solve algebraically.

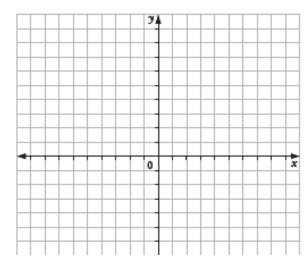
$$\frac{x}{x-1} - 2x = \frac{x+1}{2x-2} \quad \bigcirc$$

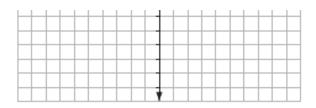
3 Multiply by CCD +

 $\frac{2(x-1)}{x-1} - 2x = \frac{x+1}{2(x-1)} ② 2(x-1) - 7 \times \neq 1$ $\frac{2(x-1)}{x-1} - 2x = \frac{x+1}{2(x-1)} ② 2(x-1) - 7 \times \neq 1$ $\frac{2x}{2x-1} - 2x = \frac{x+1}{2(x-1)} ② 2(x-1) - 7 \times \neq 1$ $\frac{2x}{2x-1} - 4x = x+1$ $\frac{2x}{2x-1} - 2x = x+1$ $\frac{2x}{2x-1}$

Use technology to graph the function using either graphical method. Sketch the graph on the grid. Label the asymptote(s) and point(s) of intersection or x-intercept(s).

Compare the solution you obtained algebraically to the one you obtained graphically. What do you notice?





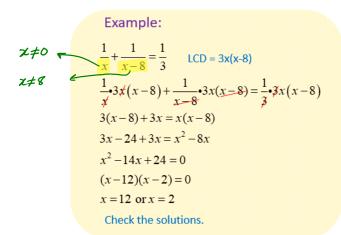
To see a similar example, see Example 3 on pages 462–463 of *Pre-Calculus 12*.

978-0-07-073891-1 Pre-Calculus 12 Student Workbook • MHR 317

Solving Rational Equations - Always do restrictions and/or checks (asymptotes or PODs)

How to solve Rational Equations?

- 1. Factor all the denominators.
- 2. Find the least common denominator (LCD).
- 3. Multiply each side of the equation by the LCD to cancel out the denominator.
- 4. Solve the equation.
- 5. Check solution(s). Reject any solution that makes the denominator = 0.



Rational fquations Restrictions

Solve

Consider this equation: $\frac{2x+2}{x-5} = x - 7$ Let's multiply both sides by x-5: $\frac{(x-5)}{10} \bullet \frac{2x+2}{(x-5)} = (x-5)(x-7)$ Cross-out and multiply: $\frac{(x-5)}{10} \bullet \frac{2x+2}{(x-5)} = x^2 - 12x + 35$ $2x+2 = x^2 - 12x + 35$ Subtract 2x and 2 from both sides: $0 = x^2 - 14x + 33$ Factor: 0 = (x-11)(x-3)Apply the zero-factor property: $Either(x-11) = 0 \quad or(x-3) = 0$

Either

x = 11 or x = 3

x#5

$$3x \cdot \left(\frac{5}{x} - \frac{1}{3}\right) = 3x \cdot \left(\frac{1}{x}\right)$$
 Multiply both sides by the LCD.

$$3x \cdot \frac{5}{x} - 3x \cdot \frac{1}{3} = 3x \cdot \frac{1}{x}$$
 Distribute.

$$15 - x = 3$$
 Simplify, and then solve.

$$-x = -12$$

$$x = 12$$

a)
$$\frac{5}{6x^2 - 9x} = \frac{1}{2x - 3} - \frac{2}{3x}$$
 b) $\frac{24}{x^2 - x - 6} - \frac{x - 1}{x + 2} = \frac{x + 3}{3 - x}$ $\frac{5}{3x(2x - 3)} = \frac{1}{2x - 3} - \frac{2}{3x} \Big| 3x(2x - 3)$ $\frac{24}{(x + 2)(x - 3)} - \frac{x - 1}{x + 2} = -\frac{x + 3}{x - 3} \Big| \cdot (x + 2)(x - 3)$ $\frac{5}{3x - 4x + 6}$ $\frac{24}{x - 2} - \frac{x - 1}{x - 2} = -\frac{x + 3}{x - 3} \Big| \cdot (x + 2)(x - 3)$ $\frac{24 - (x - 1)(x - 3) - (x + 3)(x + 2)}{24 - x^2 + 4x - 3 = -x^2 - 5x - 6}$ $\frac{9x = -27}{x - 3}$.

$$\frac{t-2}{t+2} + \frac{1}{t-2} = \frac{4}{t^2 - 4}$$

$$\frac{t-2}{t+2} + \frac{1}{t-2} = \frac{4}{(t+2)(t-2)}$$

$$(t-2)(t+2) \left[\frac{t-2}{t+2} + \frac{1}{t-2} = \frac{4}{(t+2)(t-2)} \right]$$

$$(t-2)(t+2) \left(\frac{t-2}{t+2} \right) + (t-2)(t+2) \left(\frac{1}{t-2} \right) = (t-2)(t+2) \left(\frac{4}{(t+2)(t-2)} \right)$$

$$(t-2)(t-2) + (t+2) = 4$$

$$t^2 - 3t + 6 = 4$$

$$t^2 - 3t + 2 = 0$$
Does not sabsty original equation
$$(t-2)(t-1) = 0$$

$$t = 2 \text{ or } t = 1$$

$$t = 1$$

Calcworkshop.com

$$\frac{1}{x} - 1 = \frac{3}{4x} \qquad \text{LCD} = 4x$$

$$4x \cdot \left(\frac{1}{x} - 1\right) = \left(\frac{3}{4x}\right) \cdot 4x$$

$$4x \cdot \frac{1}{x} - 4x \cdot 1 = \left(\frac{3}{4x}\right) \cdot 4x$$

$$4 - 4x = 3$$

$$-4x = -1$$

$$x = \frac{1}{4}$$

$$(x-2)(x+2) \cdot \left(\frac{8}{x+2} + \frac{8}{x-2}\right) = 3(x-2)(x+2)$$

$$(x-2)(x+2) \cdot \frac{8}{x+2} + (x-2)(x+2) \cdot \frac{8}{x-2} = 3(x-2)(x+2)$$

$$8(x-2) + 8(x+2) = 3(x^2 - 4)$$

$$8x - 16 + 8x + 16 = 3x^2 - 12$$

$$16x = 3x^2 - 12$$

$$0 = 3x^2 - 16x - 12$$

SOLVE FOR t:

$$\frac{1}{t} + \frac{2}{t} = \frac{3}{5}$$

$$\frac{1}{t} + \frac{2}{3t} = \frac{3}{5} \longrightarrow t \neq 0$$

$$\frac{1}{t} + \frac{3}{4} + \frac{2}{3} = \frac{3}{4} \longrightarrow t \neq 0$$

SOLVE FOR t:

$$\frac{1}{1} + \frac{2}{1} = \frac{3}{5} \quad \stackrel{\dagger}{LCD:5} \quad \stackrel{\dagger}{1} + \frac{2}{3} = \frac{3}{5} \quad \stackrel{\dagger}{LCD:15} \quad \stackrel{\dagger}{L$$

SOLVE FOR t:
LCD:
$$t(t+3)$$
 $\frac{1}{t+3} + \frac{2}{t} = \frac{-3}{t(t+3)}$ $t+3=0$
 $\frac{1}{t+3} + \frac{2}{t+3} - \frac{-3}{t+3}$ $t \neq 0$

$$\frac{1}{t} + \frac{2}{t} = \frac{3}{5} \qquad \frac{1}{t} + \frac{2}{3t} = \frac{3}{5} \longrightarrow t \neq 0$$

$$\frac{1}{t} + \frac{3}{t} = \frac{3}{5} \longrightarrow t \neq 0$$

$$\frac{1}{t} \cdot \frac{3}{3} + \frac{2}{3t} = \frac{3}{5} \qquad LCD: 3t$$

$$\frac{3}{t} = \frac{3}{5} \longrightarrow \frac{3}{3t} + \frac{2}{3t} = \frac{3}{5}$$

$$\frac{3}{3} + \frac{2}{3t} = \frac{3}{5} \longrightarrow \frac{25}{9} = \frac{9t}{9} \longrightarrow \frac{25}{9} = t$$

SOLVE FOR T:

$$\frac{1}{t} + \frac{2}{t} = \frac{3}{5} \quad \stackrel{t}{\downarrow} \neq 0$$

$$5 + \left(\frac{1}{t} + \frac{2}{t}\right) = 5 + \frac{3}{5}$$

$$5 + \left(\frac{1}{t} + \frac{2}{t}\right) = 5 + \frac{3}{5}$$

$$5 + \left(\frac{1}{t} + \frac{2}{t}\right) = 5 + \frac{3}{5}$$

$$15 + \left(\frac{1}{t} + \frac{2}{3 +}\right) = 15 + \frac{3}{5}$$

$$15 + \left(\frac{1}{t} + \frac{2}{3 +}\right) = 15 + \frac{3}{5}$$

$$15 + \left(\frac{1}{t} + \frac{2}{3 +}\right) = 15 + \frac{3}{5}$$

$$15 + \left(\frac{1}{t} + \frac{2}{3 +}\right) = \frac{15}{5} + \frac{3}{5}$$

$$\frac{15}{3} = \frac{3}{3} + \frac{3}{5} = \frac{5}{5} + \frac{25}{9} = \frac{5}{9} + \frac{25}{9} = \frac{5}{9}$$

$$LCD: t(t+3) = \frac{1}{t+3} + \frac{2}{t} = \frac{-3}{t(t+3)}$$

$$\frac{1}{t+3} \cdot \frac{t}{t} + \frac{2}{t} \cdot \frac{t+3}{t+3} = \frac{-3}{t(t+3)}$$

$$\frac{1}{t+3} \cdot \frac{t}{t} + \frac{2}{t} \cdot \frac{t+3}{t+3} = \frac{-3}{t(t+3)}$$

$$\frac{t}{t(t+3)} + \frac{2(t+3)}{t(t+3)} = \frac{-3}{t(t+3)}$$

$$\frac{t+2(t+3)}{t(t+3)} = \frac{-3}{t(t+3)}$$

$$\frac{t+2(t+3)}{3} = \frac{-3}{3}$$

$$\frac{t+3}{3} = -9$$

$$\frac{3}{3} = -9$$

Megan and her friends are organizing a fundraiser for the local children's hospital. They are asking local businesses to each donate a door prize. So far, they have asked nine businesses, but only one has donated a prize. Their goal was to have three quarters of the businesses donate. If they succeed in getting every business to donate a prize from now on, how many more businesses do they need to ask to reach their goal?