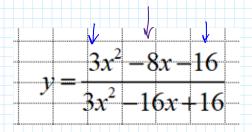

Tuesday, Feb. 20th

Plan For Today:

- 1. Questions from Chapter 4?
 - * Hand-in Chapter 4 Project
 - * Do Chapter 4 Test
- 2. Go over any review for Ch3 and Ch4
 - Unit 2 Exam is on Thursday
 - Rewrite will be following Tuesday after class
- 3. Start Chapter 5: Exponents & Logarithms
 - > 5.1: Exponents
 - 5.2: Logarithmic Functions and Graphs
 - 5.3: Properties of Logarithms
 - 5.4: Exponential and Logarithmic Equations
 - > 5.5: Applications of Exponential and Log Equations
- 4. Work on Practice Questions from Workbook

Plan Going Forward:


1. Finish going through Chapter 3-4 practice questions and workbook reviews.

UNIT 2 EXAM ON CH3&4 ON THURSDAY, FEB. 22ND

- 12 Multiple Choice & 18 marks on the Written
- lacktriangle \sim 1.5 hour please prepare so you are not "learning" while doing the test
- Closed-book no no tes
- Rewrite is following Tuesday after class at 12:30pm
- I will email you this weekend when marks are posted so you can decide on the rewrite
- I will go over the marked exam on Tuesday
- 2. We will continue in Chapter 5 after the exam on Thursday.
 - Chapter 5 project due thursday, Mar. 7th
 - Chapter 5 test on thursday, Mar. 7th

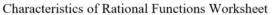
Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at <u>anurita.weebly.com</u> after class. Anurita Dhiman = adhiman@sd35.bc.ca

Ch4 Review

$$y = \frac{(3x+4)(x/4)}{(3x-4)(x/4)}$$

$$y = \frac{3x + 4}{3x - 4}$$

AC
$$-48$$


$$-12, +4 = -8$$

$$3x^{2} - 12x / +4x - 16$$

$$3x / 3x / 4x / (x - 4)$$

$$(3x + 4)(x - 4)$$

$$ROD$$
 $\chi = 4$
 $(4,2)$
 $3(4)+4$
 $= 16$
 $3(4)-4$
 $= 2$

1.
$$f(x) = \frac{x^2 + x - 2}{x^2 - x - 6}$$

OFactor
$$f(x) = \frac{(x+2)(x-1)}{(x-3)(x+2)}$$

(2) simplify
$$f(x) = \frac{x-1}{x-3}$$

	Characteristic	Answer	
	a. simplified function	$f(x) = \frac{x-1}{x-3}$	$y = \frac{-2-1}{-2-3}$
p.179	b. POD, (Have) Point of Discontinuity	$(x+i) \rightarrow x \neq -2 \cdots - (-2, \frac{3}{5})$	y= -3/5
p.176	c. vertical asymptote(s)	$(x-3)$ $VA \rightarrow x=3$	$y = \frac{3}{5}$ when
P.176 #2	d. horizontal asymptote	$\frac{\int_{\mathbb{R}^2}^2}{\int_{\mathbb{R}^2}} y = \int_{\mathbb{R}^2} HA$	X=-2
p.178	e. y-intercept	$y = 0 \xrightarrow{-1} y = 3$ $0 \xrightarrow{1}$	
מדוים 178	f. x-intercept (numerator)	$y = 0 \rightarrow 0 = \frac{x-1}{x-3} \qquad x = 1$ $0 = x-1 \rightarrow (1)$	হ্য
	g. domain	{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	FR3 .
	h. range ₩A → POD	ર્ટ્ય 1y≠1, y≠ફ્રેડ પુલ	RŠ.

1)
$$\frac{1}{6k^2} = \frac{1}{3k^2} - \frac{1}{k}$$

LCD
$$6k^2 = \frac{1}{3k^2} = \frac{1}{3k^2} \left(\frac{2}{2}\right) - \frac{1}{k} \left(\frac{6k}{6k}\right)$$

$$\frac{1}{6k^2} = \frac{2}{6k^2} - \frac{6k}{6k^2}$$

$$C = \frac{2}{6k^2} - \frac{6k}{6k^2} - \frac{1}{6k^2}$$

13)
$$1 + \frac{x^2 - 5x - 24}{3x} = \frac{x - 6}{3}$$

$$\frac{1}{3x} + \frac{x^2 - 5x - 24}{3x} = \frac{x - 6/x}{3}$$

$$\frac{3x}{3x} + \frac{x^2 - 5x - 24}{3x} - \frac{x^2 - 6x}{3x} = 0$$

$$3x + x^{2} - 5x - 24 - x^{2} + 6x = 0$$

$$4x - 24 = 0$$

$$4x = 24$$

$$4x = 24$$

$$x = 6$$